Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20

Найдено совпадений - 5254 за 0.00 сек.


ДП 661. Дипломный проект Реконструкция электропечей ДСВ-10 с заменой металлоконструкций и внедрением микропроцессорного регулятора мощности | Компас

Содержание

Введение
1 Общая часть
1.1 Описание Электросталеплавильного цеха 2 ОАО «Златоустовский металлургический завод»
1.2 Устройство и принцип работы дуговой сталеплавильной печи ДСВ-10
1.3 Описание существующей конструкции механизма передвижения электродов дуговой сталеплавильной печи ДСВ-10
1.4 Недостатки существующей конструкции механизма передвижения электродов дуговой сталеплавильной печи ДСВ-10
1.5 Предложения по модернизации механизма передвижения электродов дуговой сталеплавильной печи ДСВ-10
1.6 Кинематическая схема механизма передвижения электродов дуговой сталеплавильной печи ДСВ-10
1.7 Описание механизма передвижения электродов с электрогидравлическим приводом
2 Специальная часть
2.1 Расчет силового цилиндра
2.2 Расчет гидравлического насоса и определение его рабочего режима
2.3 Расчет трубопроводов
2.4 Расчет размеров гидробака
2.5 Выбор рабочей жидкости
2.6 Выбор распределительной и регулирующей аппаратуры
2.7 Расчет потерь давления в гидросистеме
2.8 Поверочный расчет гидропривода
2.9 Определение мощности гидропривода
3 Организация производства
3.1 Описание службы отдела главного механика ОАО "ЗМЗ"
3.2 Описание механослужбы Электросталеплавильного цеха 2 ОАО «ЗМЗ»
3.3 Порядок ввода гидропривода в эксплуатацию
3.4 Правила технической эксплуатации механизма передвижения электродов
4 Экономика производства
4.1 Капитальные затраты на внедрение
4.2 Экономическая эффективность внедрения электрогидравлического привода механизма перемещения электродов
5 Охрана труда
5.1 Техника безопасности при работе с гидроприводом
5.2 Мероприятия по противопожарной безопасности
5.3 Мероприятия по охране окружающей среды
Литература
Приложение А – Задание на дипломный проект
Приложение Б – Сокращения применяемые в тексте
Приложение В - Сторона низкого напряжения
Приложение Г - Сторона высокого напряжения

ОАО «Златоустовский металлургический завод» является одним из ведущих предприятий черной металлургии Южного Урала. Для поддержания и усиления своих позиций на рынке металлургической продукции на «Златоустовском металлургическом заводе» разработана комплексная программа модернизации, технического перевооружения и совершенствования электросталеплавильного производства (реконструкция действующего оборудования и ввод нового), как более перспективного, с последующим выводом из работы Мартеновского цеха и строительством нового Электросталеплавильного цеха №4. В рамках этой программы будет осуществлена реконструкция электропечей ДСВ-10 установленных в Электросталеплавильном цехе 2. Будет осуществлена замена электромеханического привода механизма передвижения электродов на электрогидравлический.
Внедрение электрогидравлического привода (регулятора мощности) позволит:
- увеличить выпуск стали в Электросталеплавильном цехе 2;
- снизить затраты электроэнергии на производство стали;
- снизить себестоимость стали и соответственно повысить ее конкурентоспособность;
Устройство и принцип работы дуговой сталеплавильной печи ДСВ-10

Дуговая сталеплавильная печь ДСВ-10 расположена в печном пролете Электросталеплавильного цеха 2. Всего в печном пролете расположены три дуговых сталеплавильных печи типа ДСВ-10.
Дуговая сталеплавильная печь ДСВ-10 предназначена для выплавки следующих марок сталей: высоколегированных, нержавеющих, специальных, быстрорежущих, инструментальных.
Дуговая сталеплавильная печь ДСВ-10 состоит из стального цилиндрического водоохлаждаемого корпуса с внутренней огнеупорной футеровкой, съемного свода (секторно-арочного типа, кирпичная кладка которого предварительно набрана на оводовом кольце) и сферического днища. В корпусе имеется рабочее окно, предназначенное для загрузки ферросплавов, шлакообразующих материалов и скачивания шлака, а также выпускное отверстие и сливной носок. Корпус также снабжен песочным затвором уменьшающий выброс дымовых газов между кожухом и сводом.
Свод, корпус и сливной носок футерованы магнезитохромовым огнеупорным кирпичом.
Для более плотного закрывания зазора вокруг электрода с целью уменьшения выхода газов из печи применяют холодильники с уплотняющими кольцами; кроме того, холодильники охлаждают электроды и среднюю часть свода печи. Отсос газов из печи происходит через зонт в газоочистку и затем в дымовую трубу.
Корпус смонтирован на люльке, которая двумя сегментами опирается на подвижные балки механизма выката ванны печи. В свою очередь подвижные балки опираются на рольганг, а рольганг на неподвижные балки установленные на фундаменте.
Печь имеет три электрода зажатых в электрододержателях. Ток подводится к электродам гибкими кабелями от трансформаторов.
Электропечь обслуживают следующие основные механизмы: передвижения электродов, зажима электродов, подъема свода, наклона корпуса, выката ванны печи, механизма для открывания заслонок рабочих окон и т.д.
Шихта загружается в печь при помощи 30-тонного мостового крана бадьями и коробками из шихтового пролета, где она сортируется и взвешивается.
После завалки печь закатывается под свод. Свод опускается. Затем опускаются электроды. Начинается процесс плавки. Во время процесса плавки в печь, через рабочее окно, при помощи крановой завалочной машины добавляются ферросплавы, придающие выплавляемой в печи стали определенные свойства, и шлакообразующие материалы, предварительно нагретые в двух нагревательных печах установленных тут же в печном пролете.
Во время плавки (при отключенных электродах) через рабочее окно скачивается шлак в шлаковню установленную под рабочим окном, при этом печь наклонена в сторону печного пролета на 120.
Сплав доводится до нужного химического состава. Берется проба, и её отправляют в лабораторию для проверки.
Если сталь обладает требуемым составом, то выламываются кирпичи, закрывающие выпускное отверстие и через него по сливному носу сталь сливают в ковш, поддерживаемый краном, при этом печь наклоняется в сторону литейного пролета до 420.
Основные технические данные дуговой сталеплавильной печи ДСВ-10 сведены в таблицу 1.
Дата добавления: 17.04.2013

КП 662. Курсовая работа - Проектирование и расчет цистерны модели 15-145 | Компас

Введение
1 Назначение и роль цистерны в системе грузооборота железных дорог
2 Формульровка основных технических требований на проектируемый вагон
3 Расчет линейных размеров и определение основных параметров вагона
4 Определение размеров строительного очертания цистерны по результатам вписывания в габарит 1-ВМ (0-Т)
5 Проектирование основных узлов вагона
5.1 Устройство котла цистерны
5.2 Устройство рамы цистерны
5.3 Узлы опирания и крепления котла
5.4 Внутреннее и наружное оборудование котла
5.5 Сливо-наливная и контрольная арматура цистерны
6 Расчет характеристик рессорного подвешивания
6. 1 Расчет однорядной пружины
6.2 Расчет двухрядной пружины
7 Определение требуемого коэффициента относительного трения фрикционного гасителя колебаний из условия плавности хода вагона по неровности
8 Проектирование гасителя колебаний исходя из требуемого значения коэффициента относительного трения
9 Оценка устойчивости колесной пары против схода с рельс
10 Расчет на прочность котла цистерны на рабочее и избыточное давление. 10.1 Определение величии нагрузок и схем их приложения
10.2 Исходные данные к расчету.
10.3 Результаты расчета
Заключение
Список использованных источников

Проектируемый вагон состоит из котла, рамы, ходовых частей – типовая тележка модели 18-100, ударно-тяговых приборов – типовая автосцепка СА-3, поглощающий аппарат Ш-6-ТО-4, ПМК-110А по ГОСТ 22253 или 73ZW с эластомерными материалами; типового автотормозного оборудования грузовых вагонов
Параметры проектируемого вагона (грузоподъемность, тара, объем котла, осевая нагрузка, погонная нагрузка) должны быть не хуже вагона-аналога (модель 15-145)











Дата добавления: 18.04.2013
РП 663. 12 этажный дом, ОПС | AutoCad

В качестве технических средств обнаружения пожара в 12-этажной секции дома в жилых помещениях квартир, в том числе и прихожих,принят дымовой автономный оптико-электронный пожарный извещатель ИП 212-52СИ. Дополнительно, в прихожих квартир -- тепловые максимальные пожарные извещатели «ИП 105-1», В этажных коридорах, электрощитовой, кладовой, кабельной, машинном отделении, помещениях сброса мусора и мусоросборной – шлейфы из дымовых оптико-электронных извещателей «ИП 212-45». В коридорных пожарных шкафах - ручные извещатели «ИПР-513-10».
В качестве аппаратуры приёма-обработки информации о пожарной обстановке и управления исполнительными устройствами пожарной автоматики приняты:
 Пульт контроля и управления (ПКУ) «С 2000М», установленный в помещении диспетчеров в доме поз. 51.1 - для контроля и управления работой приборов АПС и автоматики в секции. Этот пульт управляет работой приборов АПС и автоматики в доме поз. 53В. 1 очередь и его технические возможности позволяют применить его и для данного случая. Организация управления - с помощью интерфейса RS 485 по телефонным линиям, связывющим оба дома.
 Три приёмно-контрольных прибора «Сигнал 20М» - для создания шлейфов пожарной сигнализации и включения инженерной автоматики.
 Устройства релейные коммутационные «УК-ВК/4» предназначенные для подключения инженерных исполнительных устройств к сети ~ 220 В. (Приточно-вытяжной вентсистемы, вентсистем дымоудаления и подпора воздуха, клапанов дымоудаления, систем опускания лифтов, огнезадерживающих клапанов и насосной станции пожарного водоснабжения с задвижкой.) .
Дата добавления: 20.04.2013

ДП 664. Дипломный проект - Строительство моста через р. Урал в районе г. Уральска | AutoCad

Задание на дипломное проектирование
Реферат
Содержание
Введение
1. Анализ исходных данных
2. Описание местных условий района строительства
2.1 Климатические характеристики района строительства
2.2 Гидротехнические условия района строительства
2.3 Инженерно-геологические условия района строительства
3. Вариантное проектирование
3.1 Детальное описание варианта №1
3.2 Детальное описание варианта №2
3.3 Детальное описание варианта №3
4. Технико-экономическое сравнение вариантов
4.1 Эксплуатационный показатель
4.2 Технический показатель
4.3 Производственный показатель
4.4 Архитектурный показатель
4.5 Экономический показатель
5. Расчетная часть
5.1 Расчет главной балки пролетного строения
5.1.1 Сбор постоянных нагрузок на балку жесткости
5.1.2 Определение коэффициентов поперечной установки
5.1.3 Определение нормативных и расчетных усилий от постоянных нагрузок
5.1.4 Определение нормативных и расчетных усилий от временных нагрузок
5.2 Определение эффективной ширины поясов балки пролетного строения
5.3 Определение геометрических характеристик приведенного сечения
5.3.1 Определение геометрических характеристик опорного сечения
5.3.2 Определение геометрических характеристик сечения в середине расчетного пролета
5.4 Проверка прочности главной балки
5.4.1 Проверка прочности по нормальным напряжениям
5.4.2 Проверка прочности стенок балки по приведенным напряжениям
5.4.3 Проверка прочности по касательным напряжениям
5.5 Проверка балки на местную устойчивость
5.5.1 Проверка сжатого отсека стенки балки на устойчивость
5.5.2 Проверка общей устойчивости главной балки
5.5.3 Определение прогиба главной балки
5.6 Расчет ортотропной плиты проезжей части
5.6.1 Расчет листа настила
5.6.2 Расчет продольного ребра
5.6.3 Расчет поперечной балки
5.7 Расчет монтажного стыка на высокопрочных болтах поперечной балки
5.7.1 Расчет монтажного стыка поперечной балки
5.7.2 Расчет нижнего пояса монтажного стыка
6. Расчет промежуточной опоры
6.1 Определение собственного веса опоры.
6.2 Определение гидростатического давления воды на опору
6.3 Определение опорного давления от веса пролетного строения и мостового полотна
6.4 Определение опорной реакции от временной нагрузки на пролетном строении
6.5 Определение горизонтальной продольной нагрузки от торможения А11
6.6 Определение горизонтальной поперечной нагрузки от боковых ударов нагрузки А11
6.7 Определение величины давления ветра на пролётное строение и опору в направлении поперёк моста
6.8 Определение величины давления ветра на пролётное строение и опору в направлении вдоль моста
6.9 Определение давления льда на опору в направлении поперек моста
6.10 Определение давления льда на опору в направлении вдоль моста
6.11 Сбор нагрузок, действующих на опору
6.12 Расчёт сечения опоры
6.12.1 Расчёт по прочности приведенного сечения опоры на действие усилий, направленных вдоль моста
6.12.2 Расчёт по прочности приведенного сечения опоры на действие усилий, направленных поперёк моста
6.12.3 Расчёт сечения опоры на действие горизонтальных сил
7. Безопасность технологического процесса
7.1 Анализ опасных производственных факторов
7.1.1 Производственная санитария
7.1.2 Эргономика
7.1.3 Техника безопасности
7.1.4 Пожарная безопасность
7.1.5 Прогнозирование возможных ЧС
8. Экологическое обоснование проекта
8.1 Влияние загрязняющих факторов на атмосферу
8.2 Воздействие шума и вибрации на окружающую среду
8.3 Воздействие на земельные ресурсы
8.4 Соблюдение экологических требований на стройплощадке
9. Сметно-финансовый расчет
9.1 Технико-экономические показатели
9.2 Сводный сметный расчет
Заключение

Вариантное проектирование

Детальное описание варианта №1
В первом варианте запроектирован неразрезной цельнометаллический пятипролетный балочный мост с ортотропной плитой проезжей части. Отверстие моста перекрыто пролетными строениями по схеме: 84+3х105+84(м). Проезжая часть пролетного строения запроектирована согласно СНиП 2.05.03-84* Мосты и трубы <1] из условия размещения двух полос движения автотранспорта шириной 3,75 м каждая, двух полос безопасности шириной 2 м (габарит проезжей части г-11,5) и двух тротуаров шириной 1,5м.
В плане мост расположен на горизонтальной прямой. Мостовой переход пересекает русло реки Урал под прямым углом (90).
Полная длина мостового перехода (по открылкам крайних опор) составляет 489,20м. Отметка ездового полотна на мосту определена из условия обеспечения судоходства на реке Урал. Для V класса реки по судоходству высота подмостового габарита 10,5м; ширина подмостового габарита для взводного направления движения 100м, низового 60 м. Таким образом, отметка ЕП=55,61м.
Пролетное строение постоянной высоты – 3000 мм, цельнометаллическое коробчатого сечения (рис.3.1.). В поперечном сечении пролетное строение состоит из двух главных балок в виде сварных двутавров, с расстоянием в осях 8000 мм. Высота главных балок – 2988мм. Стенки коробчатого пролетного строения выполнены из стальных листов толщиной 14мм - в середине пролета, 20мм – в опорных сечениях. Жесткость стенок обеспечивают поперечные связи и вертикальные L-образные ребра жесткости, расположенные вдоль балки на расстоянии 7000мм. Расстояние в осях между стенками главной балки 8000мм. Нижний горизонтальный лист балки жесткости толщиной 20мм, шириной 8000мм имеет продольные ребра жесткости размером 14х300мм установленные с шагом 300мм. Свес консолей балки пролетного строения по 3,8м.
Поверху сварные двутавры объединены ортотропной плитой проезжей части b=15,6м. Ортотропная плита выполнена из горизонтальных листов толщиной 12мм и подкреплена продольными ребрами размером 14х250мм, расположенными с шагом 300мм и поперечными ребрами жесткости с шагом 3000 мм.
Все элементы главной балки выполнены из стали марки 15ХСНД. Исходя из условий транспортировки и монтажа, балка пролетного строения поделена на монтажные блоки длиной 10,5м. Объединение блоков в пролетные строения l=84 и 105 м выполняется болтосварным стыком. Верхний пояс выполняется на сварке, стенки и нижний пояс на высокопрочных болтах М16.

Детальное описание варианта №2
Второй вариант представлен пятипролетным неразрезным сталежелезобетонным мостом (рис.3.9.). Отверстие моста перекрыто пролетами по схеме 84+3х105+84. Проезжая часть пролетного строения запроектирована согласно СНиП 2.05.03-84*: габарит проезжей части – 11,5м, тротуары: 2х1,5м.
В плане мост расположен на прямой и пересекает реку Урал под прямым углом.
Полная длина моста (по открылкам устоев) – 489,20м.
Отметка ездового полотна на мосту  ЕП=55,61м
Пролетное строение постоянной высоты (3,0м). В поперечном сечении пролетное строение представлено четырьмя стальными балками двутаврового сечения. Расстояние в осях между балками – 3,5м. На верхние пояса балок опирается монолитная железобетонная плита проезжей части. Плита изготовляется из бетона класса В40. Высота железобетонной плиты 0,15м. Плита проезжей части не постоянна по высоте и имеет вуты. Высота железобетонной преднапряженной плиты в сечении вута составляет 0,22м. Вес металла и железобетонной плиты воспринимается главными балками. Жесткость главных балок обеспечивают поперечные связи в виде диафрагм. Диафрагмы представляют собой плоские металлические листы 20мм с отверстием. Над каждым нижним поясом главных балок уложены четыре пучка высокопрочной проволоки. Каждый пучок состоит из 24 проволок 5мм каждая. Пучки заключены в металлические трубки 50мм, которые после натяжения заполняются горячим битумом. По условию транспортировки и монтажа балка пролетного строения поделена на монтажные блоки длиной 10,5м. Блоки объединяются в неразрезное пролетное строение болто-сварным стыком: верхний пояс на сварке; стенка и нижний пояс на высокопрочных болтах. Металл стальных конструкций – сталь марки 15ХСНД, железобетонные плиты – бетон класса В40.

Детальное описание варианта №3
В третьем варианте запроектирован однопилонный вантовый безраспорный мост системы «арфа» по схеме: 300+150(м). Ванты располагаются симметрично относительно пилона в различных точках по его высоте и параллельны друг другу. Проезжая часть пролетного строения запроектирована согласно СНиП 2.05.03-84* из условия размещения двух полос движения безопасности шириной 2м (габарит проезжей части г-11,5) и двух тротуаров шириной 1,5м.
В плане мост расположен на горизонтальной прямой. Мостовой переход пересекает русло реки Урал под прямым углом.
Полная длина моста (по открылкам крайних опор) – 454,80 м.
Отметка ездового полотна ЕП=55,61м.
Пролетное строение представлено неразрезной балкой жесткости постоянного коробчатого сечения. Высота балки жесткости 3,0 м. Проезжая часть выполнена из ортотропной плиты, толщиной 12мм. Кроме функций проезжей части (восприятие временной нагрузки), ортотропная плита также выполняет функцию верхнего пояса балки жесткости и верхних продольных связей. Ширина ортотропной плиты 17,0м. В поперечном сечении коробчатое пролетное строение состоит из двух балок двутаврового сечения с расстоянием в осях 8000 мм. Толщина стенок балки 14 мм. Ширина нижнего листа балки коробки 8000 мм (рис.3.10.). Во избежание «крутильного» момента и улучшения условия обтекания балки ветровым потоком балка жесткости запроектирована с наклонными стойками. Ширина консолей 4500мм.
Все элементы главной балки выполнены из стали марки 15ХСНД. Исходя из условий транспортировки и монтажа, балка пролетного строения поделена на монтажные блоки длиной 10,5м. Объединение блоков в пролетном строении выполняется болто-сварным стыком.

Заключение
Основываясь на результатах полученных в расчётной части можно сделать выводы о том, что данная конструкция металлического пролётного строения и ж/б опоры является прочной и устойчивой ; все проверки по расчету выполняются.
Также можно особое внимание обратить на:
- пользование современных опорных частей и деформационных швов;
- перспективные конструкции проезжей части моста.
Также необходимо обратить внимание на то, что стало придаваться большое значение охране окружающей среды при строительстве мостов.
Дата добавления: 24.04.2013
РП 665. ЭОМ Капитальный ремонт внутреннего электроснабжения 5-ти этажного жилого дома в г. Ростов-на-Дону | AutoCad

Потребляемая мощность,кВт - 81,73 
Количество светильников, шт - 83
Количество квартир, шт - 90


-рабочее освещение
-сеть электроснабжения домофонов, ант. усилителей
-распределительные эл. сети до этажных щитов
-устройство повторного заземления
-замена корпусов щитов этажных ЩЭ
-освещение тамбуров входов в квартиры
-освещение подвальных помещений.
Согласно акта разграничения балансовой принадлежности жилой дом запитывается одной линией от ТП-815. Граница балансовой и эксплуатационной ответственности сторон устанавливается на наконечниках КЛ-0,4кВ во ВРУ жилого дома.
В проекте предусмотрена система сети TN-C-S.
Вводно-распределительное устройства (ВРУ) жилого дома принято напольного исполнения: вводная панель типа ВРУ3СМ-47-04 УХЛ4 (250А). Электроснабжение квартир осуществляется с помощью этажных щитов ЩЭ устанавливаемых на каждом этаже в подъезде. ЩЭ обеспечивает контроль потребления э/э, защиту потребителей от перегрузки и к. з., а также равномерное распределение нагрузки по фазам.  
ВРУ комплектуется автоматическими выключателями на вводных и отходящих линиях для защиты потребителей. Панель установить на металлической раме.
Учет электроэнергии осуществляется электросчетчиками марки:  
-Меркурий 230АR, 380/220В, 100А (для учета общедомовых нагрузок);
-Меркурий 230АR, 380/220В, 5-7,5А через трансформаторы тока ТТИ-А 200/5 5ВА 0,5  (для общего учета).


Ведомость документов 
Пояснительная записка 
Схема расположения магистральных сетей и освещения подвала 
План освещения и этажных щитов 1-го и типового этажей 
Принципиальная схема ВРУ 
Принципиальная схема ЩО 
Принципиальная схема ЩР 
Принципиальная схема ЩЭ 
Расчет электрических нагрузок 
Схема уравнивания потенциалов 
Спецификация оборудования и материалов 
Опросный лист для заказа ВРУ


 
 
Дата добавления: 24.04.2013
РП 666. СС АПС 9 этажный 120 квартирный жилой дом со встроенно-пристроенными магазинами на первом этаже | AutoCad

Часть I. Пояснительная записка
1.Основные данные
1.1 Телефонизация
1.2 Радиофикация
1.3 Телевидение
1.4 Домофонная связь
1.5 Диспетчеризации лифтовой
1.6 Заземление
1.7 Меры безопастности
2.Пожарная сигнализация магазинов общая часть
2.1.Введение
2.2.Характеристика защищаемых помещений
2.3.Основные технические решения
2.4 Пожарная сигнализация
2.5 Работа системы пожарной сигнализации
2.6 Краткие характеристики пожарных извещателей и приборов
2.7 Система оповещения
2.8 Размещение ПКП. Пост пожарной сигнализации
2.9 Электропитание оборудования
2.10 Расчёт времени бесперебойного питания от резервных источников
2.11.Монтаж оборудования и электропроводок
2.12 Заземление
2.13 Мероприятия по охране труда и технике безопасности
2.14 Сведения о сертификации оборудования
Часть II.Графические материалы
1.Общие данные
2.Схема расположения сетей систем связи и сигнализации
План сетей связи и сгнализации типового этажа
План связи и сигнализации магазинов первого этажа
План сетей связи и сигнализации чердакав
План связи"Домофон"и диспетчерского комплекса "Обь" 1 этажа
Скелетная схема сетей "Домофон" 120 квартир и диспетчеризации лифтов
Схема соединений цифрового домофона АО-30003
План сетей "Домофон"и дисп. компл."Обь" типового этажа
План сетей связи диспетчерского ком."Обь" чердачного этажа
Часть III. Прилагаемая документация
1.Спецификация оборудования

АПС:
В качестве приёмных устройств системы пожарной и тревожной сигнализации помещений встроенно-пристроенных магазинов к жилому 120 квартирному дому применяется приёмно-контрольный охранно-пожарный прибор "Сигнал-2ЛМ" для регистрации срабатывания сигнализации и управления системой устанавливается прибор в каждом из магазинов с последующей передачей сигнала на прибор "Сигнал-20П" лифтовой. Для защиты от несанкционированного проникновения в теплогенераторные магазинов применяются магнитнокантактные датчики с блокировкой дверей и оконных проемов в качестве приёмного устройства принят прибор "Сигнал-20П" лифтовой.
Приёмно-контрольный охранно-пожарный прибор "Сигнал-2ЛМ" предназначен для автономной и централизованной охраны объекта от пожара и путём контроля состояния 2 шлейфов с включенными в них пожарными извещателями и выдачи тревожных извещений о нарушении шлейфа сигнализации , срабатывании извещателей на индикаторы и сигнализатор ПКП ,а также по интерфейсу RS-485 оператору на пульт контроля и управления (С2000) ,выдачи команды управления через три релейных выхода типа "сухой контакт" и два выхода типа "открытый коллектор"релейного блока (С-2000-СП1) .Прибор обеспечивает также включение на объекте цепей управления внешними звуковыми и световыми оповещателями , сигнализаторами и указателями.
Дата добавления: 25.04.2013
КП 667. Курсовой проект (техникум) - Разработка технологического процесса на механическую обработку детали "Вал тихоходный" | Компас






























































Дата добавления: 01.05.2013
КП 668. Курсовой проект - Червячный редуктор | Компас

3.Кинематическая схема привода
4. Выбор электродвигателя
5. Определение передаточных чисел привод
6. Определение мощности,крутящего момента и частоты вращения каждого вала привода
7.Проектный расчёт червячного редуктора
7.1. Выбор материалов
7.2. Определение допускаемых напряжений
7.3.Ориентировочное значение коэффициента нагрузки
7.4.Предварительное значение расчётных параметров червячной передачи
7.5.Уточнение расчётных параметров и размеров передачи
7.6.Геометрические размеры червячной передачи
7.7.Коэффициент полезного действия
7.8.Уточнённое значение мощности на валу червяка
7.9.Силы в зацеплении червячной пары
7.10.Напряжение изгиба в зубьях червячного колеса
8.Проверочный расчёт червячной передачи
8.1.Проверка передачи на кратковременную пиковую нагрузку
8.2.Проверка редуктора на нагрев
9.Расчёт ременной передачи
9.1.Выбор сечения клинового ремня и расчётного диаметра ведущего шкива
9.2.Ориентировочное определение числа ремней
9.3.Геометрические расчёты передачи
9.4.Определение мощности, передаваемой одним ремнём
9.5.Определение числа ремней
9.6.Силы в передаче
9.7.Ресурс работы ремней
10.Определение диаметров валов
11.Геометрические параметры червячного колеса
12.Расстояния между деталями червячной передачи
13. Расчет шпоночного соединения
14. Расчет соединения с натягом
15 Выбор типа подшипников и схемы установки
16 Подбор подшипников качения на заданный ресурс
17. Расчёт тихоходного вала на статическую прочность
18.Расчёт на сопротивление усталости
19.Выбор смазочного материала
20.Список используемой литературы


1.Вращающий момент на тихоходном валу - 625,9 Н м
2.Частота вращения тихоходного вала - 25,48
3.Передаточное число редуктора - 18,64
4.Коэффициент полезного действия - 87 %
5.Радиальная консольная сила на тихоходном валу-неболее 1231 Н

Технические требования
1. Плоскость разъёма покрыть герметиком при окончательной сборке
ГОСТ 10584
2. Необработанные поверхности красить:
внутри редуктора- маслостойкой краской ГОСТ 10144,
снаружи-серой нитроэмалью ГОСТ 10354
3. В редуктор залить масло И-20А ГОСТ 20799
Объём масла 5 л
4. После сборки валы редуктора должны поворачиваться свободно без стуков и заедания
Дата добавления: 03.05.2013
РП 669. Молниезащита крыши дома культуры выполненной из профлиста | AutoCad

Молниезащита крыши здания ДК выполняется в соответствии с действующими инструкциями по устройству молниезащиты зданий и сооружений РД 34.21.122-87 и СО153-34.21.122-2003г.
Здание относится к III категории по устройству молниезащиты и подлежит защите от прямых ударов молнии и заноса высоких потенциалов через наземные и подземные металлические коммуникации.
Сопротивление заземляющего устройства должно быть не более 10 Ом.
Молниезащита создается в целях обеспечения безопасности людей, предохранения здания, материальных ценностей от взрывов, пожаров и разрушений, возможных при воздействиях молний.
В качестве молниеприемника служит металлическая кровля. Для более надежного контакта кровли с заземлителем и надежного объединения листов кровли между собой, необходимо объединить все профлисты с помощью горизонтального токоотвода, в качестве которого выступает сталь круглая Ø10мм. Над кровлей возвышаются вытяжные шахты над которыми имеются металлические защитные колпаки, которые необходимо присоединить к горизонтальному токоотводу.
Вертикальные токоотводы выполняются из круглой стали диаметром 10мм не реже, чем через 20м по периметру здания на максимально возможном расстоянии (не менее 3-х м.) от входов в здание или в местах, не доступных для прикосновения людей. В свою очередь горизонтальный и вертикальный токоотводы соединяясь между собой создают надежный электрический контакт кровли с заземлителем.
В качестве заземлителя выступает контур заземления из полосовой стали 40х4мм уложенной в земле по периметру здания на глубине не менее 0,5м от поверхности земли и не менее 1м от стен.

Общие данные
Узел 1. Узел 2
План молниезащиты и заземления
Дата добавления: 20.05.2013

КП 670. Курсовой проект - Проект АТП на 350 автомобилей разных типов: легкового Сitroen Berlingo и грузового КамАЗ-65117 | Компас

1. Задание на курсовой проект
2 Технологический расчет АТП
2.1 Исходные данные
2.2 Корректировка нормативов ресурсного пробега (или пробега до КР) и периодичности ТО
2.3 Расчёт коэффициента технической готовности
2.4 Расчет годовых пробегов подвижного состава и производственной программы ТО
2.5. Корректирование нормативных значений трудоёмкости ЕО,ТО и ТР
2.6 Расчёт годовых объёмов работ ЕО, ТО и ТР
2.7 Распределение годовых объёмов работ ЕО, ТО и ТР по их видам
2.8 Расчёт численности производственных рабочих
2.9 Расчет объёма вспомогательных работ и численности вспомогательных рабочих
2.10 Расчёт количества механизированных постов ЕОС для туалетной мойки подвижного состава
2.11 Расчёт количества постов ЕО, ТО и ТР
2.12 Расчёт площадей зон ЕО, ТО, ТР и производственных участков
2.13 Расчёт площадей складов, вспомогательных и технических помещений
3 Технико-экономические показатели проекта
Заключение
Список литературы

Задание на курсовой проект:
1. Списочное количество автомобилей
Сitroen Berlingo 150
КамАЗ-65117 200
2. Среднесуточный пробег,км
Сitroen Berlingo 280
КамАЗ-65117 300
3. Время в наряде,ч
Сitroen Berlingo 8
КамАЗ-65117 8
4. Число рабочих дней в году
Сitroen Berlingo 305
КамАЗ-65117 305
5. Климатические условия умеренные
6. Категория условия эксплуатации 2

Исходные данные







Дата добавления: 22.05.2013
ДП 671. Дипломный проект - Модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм | Компас


СОДЕРЖАНИЕ
1.Введение
2 Анализ особенностей конструкции и обоснование модернизации токарного станка с ЧПУ мод. 16К20ФЗС32
2.1 Назначение и область применения станка
2.2 Описание детали представителя «шток» и маршрут её обработки
2.3. Анализ конструкции устройств и механизмов станка
2.3.1 Общая компоновка станка
2.3.2 Описание работы отдельных узлов станка
2.4. Патентно-информационный поиск
2.5 Анализ аналогов
2.6. Уточнение технического задания по модернизации станка модели 16К20Ф3С32.
3 Конструкторская часть
3.1 Общая компоновка модернизируемого станка и описание его работы
3.2.Особенности кинематической схемы и цепей станка
3.3 Гидравлическая схема и пневматическая схемы станка
3.4 Смазочная система
4 Расчетная часть
4.1 Обоснование и предварительный расчет приводов станка
4.2 Кинематический расчет
4.3 Определение чисел зубьев зубчатых колес
4.4 Силовой расчет
4.5 Расчет особо нагруженного зубчатого зацепления
4.6 Расчет шлицевого соединения
4.7 Расчет шкиво-ременной передачи
4.8 Расчет подшипников
4.9 Определение толщины стенок корпуса
4.10 Расчет муфты
4.11 Расчет детали «Шток» методом конечных элементов
5 Расширение технологических возможностей при обработке детали на станке мод. 16К20ФЗС32
6 Техника безопасности и экология
6.1 Требования безопасности, предъявляемые к оборудованию
6.2 Опасные зоны оборудования и средства защиты
7 Технологическая часть проекта
7.1 Описание, назначение детали и условий работы ее основных поверхностей, исходя из чертежа детали
7.2 Обоснование выбора базирующих поверхностей
7.3 Определения и обоснование метода получения заготовки
7.4 Аналитический расчет припуска на поверхность
7.5 Основание выбора технологического оборудования
7.6. Расчёт режимов резания и техническое нормирование
8 Организационно-экономическая часть
8.1 Определения эконом эффективности
8.2 Расчет затрат на модернизацию
8.3 Расчет капитальных затрат
8.4 Оценка экономической эффективности
8.5 Сетевые методы планирования
8.6 Организация системы качества на предприятии
Резюме
Список используемой литературы
Приложения


Станок предназначен преимущественно для центровых работ и может оснащаться системами контурного программного управления, как отечественного, так и иностранного производства. Программа перемещений инструмента и вспомогательные команды записываются в одном из стандартных кодов
Станки применяются в индивидуальном, мелкосерийном и серийном производствах с небольшими повторяющими партиями.
Класс точности станка – П.
Область применения станка является индивидуальное, мелкосерийное и серийное производство с мелкими повторяющимися партиями деталей /16/.
Дата добавления: 24.05.2013
КП 672. Курсовой проект - Расчет коробки скоростей горизонтально фрезерного станка мод. 6Н81ГМ | Компас

Введение
1 Расчет режимов резания
2 Кинематический расчет коробки скоростей
3 Выбор электродвигателя
4 Принцип действия принципиальной электрической схемы
5 Расчет зубчатой передачи
6 Расчет клиноременной передачи
7 Расчет диаметров валов
8 Проектирование кулачка
9 Расчет второго вала коробки скоростей
Литература






Дата добавления: 25.05.2013



































КП 673. Курсовой проект - Охрана воздушного бассейна от выбросов | AutoCad

Введение
1. Характеристика объекта и исходные данные
1.1. Исходные данные
1.2. Характеристика объекта
2. Определение количества вредных веществ, выбрасываемых в атмосферу
2.1. Определение расхода топлива и дымовых газов
2.2. Расчет количества вредных веществ, выбрасываемых в атмосферу
2.2.1 Расчет выбросов оксидов азота
2.2.2 Расчет выбросов диоксида серы
2.2.3 Расчет выбросов оксида углевода
3. Инвентаризация выбросов загрязняющих веществ
4. Расчет приземных концентраций вредных веществ
4.1. Определение концентраций диоксида азота при работе на основном топливе
4.2. Расчет приземной концентрации диоксида серы при работе на резервном топливе
4.3. Предельно допустимый выброс
5. Эколого-экономическое обоснование выбора пылегазоочистного оборудования
5.1Расчет абсорбционной установки для очистки дымовых газов от диоксида серы
5.1.1Известковый метод очистки
5.1.2. Содовой метод очистки
5.1.3 Подбор насосов
6. Выбор экономически целесообразного вариант очистки дымовых газов

Характеристика объекта.






































Дата добавления: 26.05.2013

КП 674. Курсовой проект - Одноэтажное промышленное здание в сборном железобетоне в г. Тула | Компас

1. КОМПОНОВКА ЗДАНИЯ
2. БАЛКА ПОКРЫТИЯ
1. НАГРУЗКИ И РАСЧЕТНЫЙ ПРОЛЕТ
2. РАСЧЕТ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ
2.1 РАСЧЕТ НА ПРОЧНОСТЬ ПО ИЗГИБАЮЩЕМУ МОМЕНТУ
2.2 РАСЧЕТ НА ПРОЧНОСТЬ ПО ПОПЕРЕЧНОЙ СИЛЕ
3. РАСЧЕТ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ
3.1 ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ
3.2 ОПРЕДЕЛЕНИЕ ПОТЕРЬ ПРЕДВАРИТЕЛЬНОГО НАПРЯЖЕНИЯ АРМАТУРЫ
3.3 ПРОВЕРКА РАСЧЕТНОГО СЕЧЕНИЯ НА ОБРАЗОВАНИЕ ТРЕЩИН
3.4 РАСЧЕТ БАЛКИ ПО РАСКРЫТИЮ ТРЕЩИН
3.5 ОПРЕДЕЛЕНИЕ ПРОГИБА БАЛКИ
3. СТАТИЧЕСКИЙ РАСЧЕТ РАМЫ
3.1 ОПРЕДЕЛЕНИЕ НАГРУЗОК
3.1.1 ПОСТОЯННЫЕ НАГРУЗКИ
3.1.2 ВРЕМЕННЫЕ НАГРУЗКИ
3.2. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОЛОНН
3.3. ОПРЕДЕЛЕНИЕ УСИЛИЙ В КОЛОННАХ
3.4. СОСТАВЛЕНИЕ ТАБЛИЦ РАСЧЁТНЫХ СОЧЕТАНИЙ УСИЛИЙ
4. РАСЧЕТ КОЛОНН ПО НЕСУЩЕЙ СПОСОБНОСТИ
4.1. ВЫБОР КОМБИНАЦИЙ УСИЛИЙ ДЛЯ РАСЧЕТА КОЛОНН
4.2.РАСЧЕТ КРАЙНЕЙ КОЛОННЫ
4.2.1.РАСЧЕТ ПРОДОЛЬНОЙ АРМАТУРЫ
4.2.2.ПРОВЕРКА ПРОЧНОСТИ КОЛОННЫ ПРИ СЪЕМЕ С ОПАЛУБКИ, ТРАНСПОРТИРОВАНИИ МОНТАЖЕ
4.3.РАСЧЕТ ПОДКРАНОВЫХ КОНСОЛЕЙ
4.4.ПРОВЕРКА ПРОЧНОСТИ КОЛОННЫ НА ВНЕЦЕНТРЕННОЕ СЖАТИЕ ИЗ ПЛОСКОСТИ РАМЫ
5. ФУНДАМЕНТ
1.ИСХОДНЫЕ ДАННЫЕ, НАГРУЗКИ И УСИЛИЯ
2.ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДОШВЫ
3.РАСЧЕТ ФУНДАМЕНТА НА ПРОЧНОСТЬ
4.РАСЧЕТ ФУНДАМЕНТА ПО ОБРАЗОВАНИЮ И РАСКРЫТИЮ ТРЕЩИН
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Исходные данные для расчёта
1. Тип местности для ветровой нагрузки – А.
2. Уровень ответственности здания – II-нормальный (коэффициент надежности по ответственности – n=0,95).
3. Ширина здания – 36 м (два пролета по 18 м).
4. Шаг колонн поперек здания – L=18 м, вдоль здания – b=6 м.
5. Расстояние от пола до низа несущих конструкций покрытия – 14,4 м.
6. Количество мостовых кранов в пролете – два, грузоподъемность их 16/3,2 т (с двумя крюками). Режим работы крана средний группы 5К.
7. Несущие конструкции покрытия – предварительно напряженные двускатные балки с натяжением арматуры на упоры стенда.
8. Железобетонные колонны – ступенчатые прямоугольного сечения.
9. Плиты покрытия – комплексные ребристые 63 м с напряженной арматурой.
10. Подкрановые балки – сборные, фундаменты – монолитные с учетом нулевого цикла производства работ.
11. Стены панельные самонесущие толщиной 300 мм.
12. Материалы для железобетонных конструкций:
а) вид бетона – тяжелый;
б) класс бетона: для двускатных балок покрытия – В35, для колонн – В15, для фундаментов В15;
в) рабочая арматура классов: для балок покрытия – А600, для колонн – А400 (А-III), для фундаментов – А400 (А-III);
г) монтажная и поперечная арматура всех элементов – классов А240 (А-I) и В500 (Вр-I). 13. Расчетное сопротивление грунта R=0,19 МПа (190 кПа).
Выбор конструктивных элементов здания
1. Покрытие здания — решается по беспрогонной схеме из ребристых плит, укладываемых на балки покрытия — ригели поперечных рам. Принимаем комплексные ребристые плиты с напряженной арматурой размером в плане 3×6 м и высотой ребра — 300 мм. Вес 1 кв. м этой плиты с заливкой швов — 1,65 кН. В качестве утеплителя принят керамзит толщиной 16 см с =600 кг/м3.
2. Ригелем покрытия является двускатная балка с преднапряженной арматурой (рис.4). Высота балок на опоре 790мм, сечение – двутавровое. Ширина полок: верхних –400мм; нижних –270мм.
3. Подкрановые балки приняты сборными таврового сечения — по серии 1.426.1—4 (рис. 5). Длина их 5,95 м, высота — 800 мм, толщина ребра — 200 мм, ширина полки — 600 мм. Масса балки — 3,5 т, высота подкранового рельса с упругой прокладкой — 150 мм, масса его — 100 кг/п. м.
4. Стены здания — самонесущие простеночные, перемычечные и рядовые панели из лёгкого бетона толщиной 300 мм, высотой 1200 и 1800 мм и длиной 6,0 м. Плотность легкого бетона (керамзитобетон, шунгизитобетон и т. д.) в панелях =1200 кг/м3, вес 1 кв. м стены — 360 кг. Простеночные панели опираются на цокольные, которые укладываются, в свою очередь, на подколонники фундаментов. На рис. 2 приведены схемы компоновки наружных стен здания из самонесущих и цокольных панелей, а на рис. 6 — габаритные размеры этих панелей.
5. Колонны — сборные железобетонные ступенчатые прямоугольного сечения по серии 1.424.1-5.
Высоту надкрановой части колонн и размеры сечений их по этой серии принимают в зависимости от величины пролета и высота здания, шага колонн, грузоподъемности и режима работы мостовых кранов.
Пролет здания 18 м. Высоту от низа покрытия до уровня пола (Н) 14,4 м. Продольный шаг колонн 6 м. Режим работы мостовых кранов – нормальный, группы 5К, грузоподъемность их 16/3,3т.
Высота надкрановой части колонны (НВ) составляет 3,5 м. Ширина сечения (b) для всех колонн принята 400 мм. Высоту сечения надкрановой части колонн (hВ) принимаем для крайних колонн – 380 мм.
Дата добавления: 26.05.2013
РП 675. ГСН КС Газопровод низкого давления к жилым домам в Новосибирской области | AutoCad

Общая протяженность трассы газопровода составляет: 
Ø76х3.5 - 838м;
∅89х3.5 - 473м;
∅159х4.5 - 12м.


Общие данные
План трассы газопровода низкого давления по пер. Октябрьский.  
План трассы газопровода низкого давления по ул.  М. Горького, ул. Молодежная, ул. Щетинкина.  
Профиль продольный от т .1 до ОП 20.  
Профиль продольный от ОП 20 до ОП 42.  
Профиль продольный от ОП 42 до ОП 58.  
Профиль продольный от т .2 до ОП 80.  
Профиль продольный от ОП 80 до ОП 95.  
Профиль продольный от т .3 до ОП 148.  
Профиль продольный от ОП 148 до ОП 168.  
Профиль продольный от ОП 168 до ОП 193.  
Профиль продольный от т .4 до ОП 126.  
Профиль продольный от ОП 193 до ОП 199.  
Профиль продольный от ОП 126 до НО 13.


 
Дата добавления: 27.05.2013


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.