Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


7%20%20

Найдено совпадений - 5254 за 0.00 сек.


КП 3451. Курсовой проект - Технологическая карта на возведение монолитных железобетонных конструкций типового этажа 15-ти этажного жилого дома в г. Краснодар | AutoCad
1. ОБЛАСТЬ ПРИМЕНЕНИЯ
2. ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ СТРОИТЕЛЬНЫХ ПРОЦЕССОВ
2.1 РАЧАЛО РАБОТЫ
2.2 УСТРОЙСТВО ВЕРТИКАЛЬНЫХ КОНСТРУКЦИЙ ТИПОВОГО ЭТАЖА
2.2.1 Расчет №1. Определение геометрических объемов вертикальных конструкций
2.2.2 Устройство Арматурного Каркаса
2.2.3 Расчет №2. Определение количества арматуры для вертикальных конструкций типового этажа
2.2.4 Монтаж опалубки
2.2.5 Демонтаж опалубки
2.2.6 Бетонирование стеновых конструкций
2.2.7 Расчёт №3. Выбор механизмов для подачи арматуры, опалубки и бетонной смеси к месту производства работ
2.2.8 Размер технологической зоны бетонирования
2.2.9 Назначение захваток
Сопоставление трудоемкости бетонирования захваток
2.3 УСТРОЙСТВО ГОРИЗОНТАЛЬНЫХ КОНСТРУКЦИЙ ПЕРЕКРЫТИЯ ТИПОВОГО ЭТАЖА
2.3.1 Определение нормы тепловой защиты по условиям энергосбережения
2.3.2 Монтаж опалубки
2.3.3 Устройство арматурного каркаса
2.3.4 Расчёт №6. Определение количества арматуры
2.3.5 Бетонирование плиты перекрытия
2.3.6 Расчёт №7. Определение предельной длины полосы бетонирования и показателей выработки бетона в смену
2.3.7 Определение размеров захваток в соответствии с конструктивными особенностями блока бетонирования, бетонируемого без перерыва.
2.3.8 Сопоставление трудоемкости бетонирования захваток.
3. ТРЕБОВАНИЯ К КАЧЕСТВУ ПРИЕМКИ РАБОТ
4. Материально-технические ресурсы
4.1 Ведомость потребности в конструкциях и материалах
4.2 Ведомость потребности в машинах, оборудовании и инструментах
4.3 Ведомость объемов работ
4.4 Калькуляция затрат труда
5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ОХРАНА ТРУДА
5.1 Бетонные и железобетонные работы
5.2 Работы по обогревающим проводам
5.3 Монтажные работы
6. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ
7. Библиографический список

Объект – жилое 15-этажное здание, выполненное из монолитного железобетона. Несущие вертикальные конструкции представлены стенами, перекрытие безригельное.
Технологическая карта разработана на возведение стен и перекрытия типового этажа.
Предусматривается использование опалубки фирмы Thyssen.
Строительство ведется в городе Краснодар, климатический район III, расчетная температура наружного воздуха t = -21°C. (СП 50.13330.2012).
Работы выполняются в 1 смену, время на выполнение комплекса работ составляет 11 дней.
В состав работ, рассматриваемых ТК, входят:
арматурные работы;
опалубочные работы;
бетонные, в том числе вспомогательные: подача материалов и уход за бетоном.
Для производства работ используется башенный кран
Во всех возводимых конструкциях применяется бетон класс В20, в качестве рабочей арматуры применяетсяА400, конструкционной А240.

Технико-экономические показатели
При возведении конструкции из монолитного железобетона определяют следующие показатели:
Общая продолжительность работ, устанавливаемая по графику производства работ: 10дн.
Нормативная трудоёмкость н. выполнения комплекса работ по возведению типового этажа, суммарно принимается по калькуляции затрат труда и машинного времени: н.=142,41 чел.-дн.
Проектная трудоёмкость θ_(п.)=∑_(i=1)^n▒〖N_i×t_i 〗=148 чел.-дн.
где Ni- количество рабочих в смену, задействованных на выполнении i-го процесса;
ti – продолжительность процесса в сменах, принимаемая по графику производства работ.
Проектная трудоёмкость на м3 бетона в конструкциях:
где V – суммарный объём железобетонных конструкций стен и перекрытия типового этажа.
θ_(п.)^(ед.)=θ_(п.)/V=148/177,41=0,83
Проектная выработка на одного рабочего в день Вn.: B_(п.)=V/θ_(п.) =177,41/162=1,1
Уровень производительности труда (%): У_(п.т.)=θ_(н.)/θ_(п.) ×100%=142,41/162×100%=91,26%
Дата добавления: 30.11.2020
КП 3452. Курсовой проект - Здание центральной трубной базы 66 х 31 м в г. Ейск | AutoCad

Введение
1. Исходные данные
1.1. Оценка инженерно-геологических условий площадки
2. Генеральный план
3. Объёмно-планировочное решение здания базы
4. Конструктивное решение здание базы
5. Архитектурное решение фасада
6. Основные строительные показатели
Заключение
Список использованных источников
Приложение №1 План на отм. 0.000
Приложение №2 Разрез 1-1
Приложение №3 Главный фасад

Исходные данные:
1. Пункт строительства – г. Ейск
2. Наименование проектируемого здания – Здание центральной трубной базы
3. Габариты здания в плане:
- длина здания А, м - 66 м.
- размеры параллельных пролетов, м: L01= 18 м; L02= 12 м.
4. Высота этажа Н0 , м - Н01 =12,6 м. и Н02 =8,4 м.
5. Тип кранового оборудования - электромостовой кран грузоподъемностью 32 т. в пролете L01; подвесной кран грузоподъемностью 20 т. в пролете L02.
6. Конструктивная схема проектируемого здания - каркасная пролетного типа. Каркас сборный железобетонный.

Фундаменты под колонны сборные железобетонные стаканного типа, отметка обреза фундамента унифицирована и принята -0.150.
Колонны основного каркаса для пролета L01 устанавливаются: прямоугольные типовые железобетонные двухветвевые колонны КДII-6 (серия КЭ-01-52), с шириной сечения 500 мм. Для пролета L02 устанавливаются колонны железобетонные прямоугольного сечения 6К84-1 (серия 1.4231-3/88, выпуск 1, книга 2).
Колонны торцевого фахверка запроектированы железобетонные с сечением 300х300 мм (Серия 1.427.1-3). Предусматривается их шарнирное опирание понизу на фундаменты.
Подкрановые балки Б6-10-6 (Серия 1.426.2-3) – стальные разрезные подкрановые балки с пролетами 6 м.
В качестве подстропильных конструкций для пролета L01 используются железобетонные сегментная безраскосная ферма с «рожками» для малоуклонной и скатной кровли 1ФБМ18 (ГОСТ 20213-89. Серия 1.463.1-3/87).
В качестве подстропильных конструкций для пролета L02 используются железобетонные подстропильные двускатные балки 1БДР12 (СЕРИЯ 1.462-3) пролетом 12 м.
В качестве плит покрытия используем железобетонные ребристые плиты ЗПГ6 (Керамзитобетон. Серия 1.465.1-21.94), изготавливаемые длинной 6 м и шириной 3 м.
Ворота запроектированы распашными, со стальным каркасом и калиткой. Размер ворот 3,0х3,0 м. С наружной стороны ворот для въезда безрельсового транспорта предусматриваются пандусы с уклоном 1/10.

Основные строительные показатели
1. Площадь застройки здания в пределах внешнего периметра наружных стен – 2137 м².
2. Общая площадь производственных помещений – 2094 м².
3. Строительный объем:
V(L01) = 20078 м³;
V(L02) = 8677 м³
Дата добавления: 30.11.2020
ДП 3453. Дипломный проект (техникум) - 3-х этажная кирпичная блок-секция 17 х 12 м в г. Москва | Компас

РАЗДЕЛ 1 АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ
1. Введение
2. Характеристика района строительства
3. Характеристика здания
4. Ген. план
5. Конструктивное решение.
5.1 Фундаменты, расчет заложения фундамента
5.2 Стены и перегородки
5.3Теплотехнический расчет
5.4 Плиты перекрытия
5.5 Лестница, расчет лестницы
5.6 Кровля
5.7Полы
5.8 Окна
5.9 Двери
6. Отделка
7. Спецификация
8. Инженерное оборудование
РАЗДЕЛ 2 РАСЧЕТ СК
2.1. Сбор нагрузок на 1 м2 площадки
2.2. Расчет лобового ребра
2.3. Расчет пристенного ребра
2.4. ТЭП
РАЗДЕЛ 3 ТиОСП
Часть 1 Технологическая карта на производство каменной кладки
3.1 Описание выбранного способа производства работ
3.2 Таблица №1 Подсчет объемов работ
3.3 Таблица №2 Калькуляция трудовых затрат и стоимости
3.4 Расчет состава бригад
3.5 Проектные решения по Т.Б.
3.6 Схемы операционного контроля
3.7 Выбор машин и механизмов для производства работ
3.8 Таблица №3 ведомость расходов материалов
Часть 2 Календарный план производства работ
3.2.1 Описание способа производства основных видов работ
3.2.2 Проектные решения по Т.Б
3.2.3 Описание графика движения рабочих.
3.2.4 Описание графика завоза и расхода материалов.
3.2.5 Описание графика движения машин и механизмов
3.2.6 ТЭП календарного плана.
РАЗДЕЛ 4 ЭКОНОМИКА 4.1. Исходные данные
4.2. Назначение локальной сметы
4.3. ТЭП.
Список используемой литературы

Проектируемое здание – 3-х этажный односекционный жилой дом.
Планировочная схема – секционная, на одном этаже расположены :
Одна- 3-х комнатная квартира
Одна- однокомнатная квартира
Одна- 2-х комнатная квартира
Конструктивная схема с продольными несущими стенами.
Нэт=2,8м.
Высота здания 11,35м.
Фундамент- сборный ленточный.
Наружные стены кирпичные- 770мм.
Внутренние-380мм.
Перегородки- 120мм.
Перекрытие- многопустотные плиты перекрытия толщиной 220мм.
Лестницы- железобетонные марши и площадки.
Кровля из наслонных стропил.
Полы- линолеум, керамическая плитка.
Отделка- улучшенная.
Окна- деревянные блоки. Раздельные.
Двери – глухие и остекленные.
Дата добавления: 01.12.2020
КП 3454. Курсовой проект - Проектирование магистральных тепловых сетей для г. Архара | AutoCad

Содержание 3
1. Исходные данные 4
2. Основные конструктивные решения 5
3. Теплоснабжение района города 7
3.1 Определение тепловых нагрузок кварталов города 7
4. Расчет и построение графиков теплового потребления. 10
4.1Расчет и построение годовых графиков и часовых графиков расходов теплоты на отопление вентиляцию и ГВС. 10
5. Выбор способа регулирования 13
6. Расчетные расходы сетевой воды по кварталам 17
7. Гидравлический расчет тепловых сетей 20
7.1 Гидравлический расчет главной магистрали 20
8. Построение пьезометрического графика магистрали 25
9. Подбор сетевых и подпиточных насосов 27
9.1 Подбор сетевых насосов 27
9.2 Подбор подпиточных насосов 28
Список использованной литературы

Исходные данные
1.Район строительства – г. Архара;
2.Температура наружного воздуха:
для проектирования системы отопления – tо= –36 0С
для проектирования системы вентиляции – tv= –25 0С;
3.Средняя температура отопительного периода – tот= –11,8 0С;
4.Продолжительность отопительного периода – Zот= 219 суток;
5.Расчетная температуры теплоносителя – 1=100 0С ; 2=70 0С;
6.Плотность населения – 400 чел/га;
7.Норма жилой площади на 1 жителя – 15 м2/чел;
8.Система теплоснабжения – закрытая;
9.Тип прокладки трубопровода – бесканальная прокладка;
10.Укрупненный показатель максимального теплового потока на отопление жилых зданий на 1 м2 общей площади, q0 = 90 Вт/м2;
11. Располагаемый напор в камере – HРасп = 42м;
12. Масштаб района города 1:40000

Согласно расчету для данного микрорайона преобладающей является жилищно-коммунальная нагрузка, исходя из этого условия, принят повышенный график центрального качественного регулирования (регулирование по совместной нагрузке отопления и горячего водоснабжения). Трассу тепловых сетей следует размещать в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы древесных насаждений. При проектировании квартальных тепловых сетей трасса пересекает жилые здания, прокладка сетей осуществляется в технических подпольях высотой более 1,8 м с устройством дренирующего колодца в нижней точке на выходе из здания. Пересечение до-рог, проездов, других коммуникаций, а также зданий и сооружений предусматривается под прямым углом. Тип прокладки - подземная, бесканальная. Уклон тепловых сетей составляет не менее 0,002.
При проектировании тепловых сетей выбор варианта обусловлен наименьшей протяженностью тепловых сетей, с меньшим количеством тепловых камер, применением двухстороннего подключения кварталов. Схемы квартальных тепловых сетей принимаются тупиковыми, без резервирования.
Для трубопроводов применяются стальные электросварные трубы.
Запорная арматура предусматривается:
- на трубопроводах выводов тепловых сетей от источников теплоты;
- на трубопроводах тепловых сетей Dу = 400-500 мм - до 1500 м,
- на трубопроводах тепловых сетей мм - до 3000м.
В нижних точках трубопроводов тепловых сетей устанавливаются штуцера с запорной арматурой для спуска воды (спускные устройства). В высших точках трубопроводов устанавливаются штуцера с запорной арматурой для выпуска воздуха (воздушники).
К расчету приняты неподвижные щитовые опоры, устанавливаемые в местах ответвлений, размещения секционирующих задвижек, на участках само-компенсации с углами поворота 90-1300.
Устанавливаются промежуточные не-подвижные опоры на протяженных прямолинейных участках. Максимальные расстояния между неподвижными опорами не должны превышать установленных величин. Выбор типа опоры произведен по наибольшей горизонтальной нагрузке, на которую рассчитана данная опора.
Компенсация температурных деформаций в тепловых сетях обеспечивается: на магистральных трубопроводах сальниковыми компенсаторами и П-образными компенсаторами на квартальных сетях, а также самокомпенсацией.
 
Дата добавления: 02.12.2020
РП 3455. ЭОМ Дом культуры | AutoCad


Руст=101,619Вт, Ррасч=74,95кВт.
РЩ получает питание от ВРУ по одной линии.

Электрооборудование.
Напряжение сети 380/220В с системой заземления – ТN-С-S.
Вводно-распределительное устройство (ВРУ) с токоограничивающим автоматическим вы-ключателем на вводе и автоматическими выключателями на отходящих линиях установлен в по-мещении электрощитовой.
Распределение электроэнергии осуществляется с распределительных щитов (РЩ и РЩ ТХ) индивидуального изготовления, с установкой в них автоматических выключателей на групповых линиях и дифференциальных автоматических выключателей для сетей, питающих розеточные группы. Щит РЩ ТХ и кабельные линии до технологического оборудования в данном проекте не рассматриваются.
Учет электроэнергии осуществляется на ВРУ и в данном проекте не рассматривается.

Электроосвещение
Проектом предусматриваются следующие виды освещения:
˗ рабочее (220В) во всех помещениях;
˗ аварийное эвакуационное освещение (220В) в коридоре;
˗ над проемами выходов по пути эвакуации устанавливаются световые указатели «ВЫХОД» (учтены в разделе ПС).
К установке приняты светодиодные светильники.

Общие данные.
План размещения оборудования освещения. М 1:100
План прокладки кабелей розеточной сети. М 1:100
Схема принципиальная однолинейная РЩ
Таблица кабельный соединений и подключений



Дата добавления: 02.12.2020
КП 3456. Курсовой проект - Фундаменты механического цеха 36 х 54 м в г. Челябинск | AutoCad

1. Задание на курсовой проект
2. Оценка инженерно-геологических условий и гидрогеологических условий и свойств грунтов
2.1 Определение дополнительных характеристик физико-механических свойств грунта. Построение эпюры расчетного сопротивления грунта основания
2.2 Построение эпюры расчетного сопротивления грунта основания
3. Конструктивные особенности здания и характер нагрузок
4. Вариантное проектирование
4.1. Вариант №1. Фундамент на естественном основании
4.2. Вариант №2. Фундамент на забивных железобетонных сваях
4.3. Вариант №3. Фундамент на песчаной подушке
5. Проектирование фундаментов сварочного цеха
5.1 Проектирование фундамента №1
5.2 Проектирование фундамента №3
5.3 Проектирование фундамента №4
6. Определение относительной разности осадок фундаментов
7. Рекомендации по производству работ
8. Список литературы

Расчетные характеристики физико-механических свойств грунтов представлены в таблице.






















Дата добавления: 02.12.2020
КП 3457. Курсовой проект - Анализ механизма "Насос" | Компас

Исходные Данные
1.Структурный анализ механизма.
1. Структурный анализ и кинематическое исследование основного механизма (Насос)
1.1 Схема основного механизма
1.2 Разбиваем основной механизм на группы Ассура, начинаем с наиболее удаленной от ведущего звена группы.
Кинематическое исследование механизма
2.1 Определение скоростей точек звеньев механизма
2.2 Скорости точек звеньев механизма
2.3 Определение угловых скоростей
2.4 Угловые скорости звеньев механизма
2.6 Определение ускорений точек звеньев механизма.
2.7 Определение угловых ускорений механизма
2.8 Угловые ускорения звеньев механизма
3. Силовой расчет
3.1 Определение сил, действующих на звенья механизма.
3.2 Величины сил инерции
3.3 Моменты от сил инерции звеньев
3.4 Определение реакций в кинематических парах.
Синтез эвольвентного зубчатого зацепления
Геометрические параметры зацепления
Качественные показатели зацепления
4. СИНТЕЗ КУЛАЧКОВОГО МЕХАНИЗМА
5. ДИНАМИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА
1.Приведение сил, построение диаграммы работ и их разностей
2. Приведение моментов инерции
3. Расчет маховика.
4. Нахождение величины махового момента инерции маховика по методу Мерцалова
5. Определяем угловую скорость главного вала машины.
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кинематический анализ методом графического дифференцирования.
2. Проверка Силового расчета методом Жуковского.
3. Синтез эвольвентного зубчатого зацепления.
4. Синтез кулачкового механизма.
5. Динамический анализ механизма.


2Лист: План ускорений для одного из положений механизма; группы Ассура звеньев; план сил для выбранного положения; метод Жуковского.
Лист3: Зубчатое зацепление; диаграмма скоростей скольжения; диаграмма зоны двухпарного зацепления; диаграмма коэффициентов удельных скольжений; схема зубчатой передачи.
Лист4: Диаграмма движения толкателя; Определение минимального радиуса кулачка; профилирование кулачка; 
Лист5: Диаграмма приведенных моментов движущих сил и сил сопротивления; Диаграмма работ движущих сил и сил сопротивления; диаграмма разности работ; диаграмма приведенных моментов инерции; Кривая Виттенбауэра; Эскиз маховика; Проверка по методу Мерцалова; диаграмма угловых скоростей; диаграмма аналоговых угловых ускорений; диаграмма изменений кинетической энергии машины и маховика.




Дата добавления: 02.12.2020

КП 3458. Курсовой проект - 2-х этажный 4-х квартирный жилой дом 17,4 х 13,6 м в г. Владивосток | AutoCad

1.Введение
2.Архитектурно-строительная часть
1.1 Фундамент
1.2 Полы
1.3 Стены
1.4 Лестницы
1.5 Перегородки
1.6 Окна и двери
1.7 Перекрытия
1.8 Крыша, кровля
3. Список использованной литературы

Дано было задание запроектировать 2-х этажное жилое здание с параметрами:
- место строительства – г. Владивосток.
- материал стен – кирпич.
- глубина промерзания – 1.9 м.
Размеры здания (по осям):
- длина 17400 миллиметров.
- ширина 13600 миллиметров.

Для данного здания принят ленточный фундамент под наружными стенами шириной 610 x 610 миллиметров, под внутренними 480 x 480.
Наружные стены выполнены из глиняного кирпича толщиной 510 мм с утеплителем из минераловатных плит толщиной 120 мм, толщина несущих внутренних и межквартирных стен принята равной 380 мм, что обеспечивает их устойчивость к нагрузкам, достаточную тепло- и шумоизоляцию. Наружная отделка – алюминиевый сайдинг.
Перегородки - выполнены из кирпича толщиной – 120 мм. на цементном растворе марки 30.
В данном проекте выбраны плиты перекрытия Марки ПК (пустотелые плиты опалубочного формования), уложенные на несущие стены вплотную друг к другу толщиной 220 мм, шириной 1200 мм, длиной 2400 мм, 5200 мм и 6700 мм.
Верхняя водонепроницаемая часть крыши – кровля. Кровля выполняется из оцинкованной стали 0,5 мм. Кровля крепится к обрешетке клямерами (150 x 30). Клямеры стоят шагом 1 м, не менее 2-х штук на каждую сторону листа. Запроектирована вальмовая крыша: она же четырехскатная с уклоном ската = 24 градуса, с холодным проветриваемым чердаком.
Дата добавления: 03.12.2020
КП 3459. Курсовой проект- ОиФ механического цеха 48,0 x 37,2 м в г. Челябинск | AutoCad

1 Исходные данные для проектирования 3
1.1 Данные о сооружении 3
1.2 Инженерно-геологические условия площадки строительства 4
2 Оценка инженерно-геологических условий строительной площадки 6
2.1 Дополнительные характеристики грунтов 6
2.2 Нормативная глубина сезонного промерзания грунта 7
2.3 Расчетные сопротивления грунтов 8
2.4 Выводы 10
3 Разработка вариантов фундаментов 12
3.1 Конструктивные особенности здания 12
3.2 Фундамент на естественном основании 13
3.3 Фундамент на песчаной подушке 26
3.4 Свайный фундамент 35
4 Расчет технико-экономических показателей 46
5 Конструирование основного типа фундаментов под остальные колонны 50
6 Расчет технико-экономических показателей фундамента на песчаной по-душке для всего здания 56
7 Рекомендации к производству работ нулевого цикла 58
8 Выводы 60
9 Список использованной литературы 61


Варианты сооружений и значения нормативных нагрузок на обрезы фундаментов при наиболее невыгодных сочетаниях






Значения характеристик физико-механических свойств грунтов:





ВЫВОДЫ
По результатам расчетов основным типом фундаментов был выбран фундамент на песчаной подушке с глубиной заложения 1,8 м и высотой песчаной подушки 1 и 1,5 м.
Размеры фундамента ФМ-1:
Первая ступень: l_1=3,0 м.; b_1=1,8 м.; h_1=0,3 м.
Вторая ступень: l_2=2,1 м.; b_2=1,8 м.; h_2=0,3 м.
Подколонник: l_п=1,5м.; b_п=1,2 м.; h_п=1,2 м.
Размеры фундамента ФМ-2:
Первая ступень: l_1=3,6 м.; b_1=2,1 м.; h_1=0,3 м.
Вторая ступень: l_2=3,0 м.; b_2=1,5 м.; h_2=0,3 м.
Подколонник: l_п=2,4м.; b_п=0,9 м.; h_п=1,2 м.
Размеры фундамента ФМ-3:
Первая ступень: l_1=2,1 м.; b_1=1,5 м.; h_1=0,45 м.
Подколонник: l_п=1,2м.; b_п=1,2 м.; h_п=1,35 м.
Размеры фундамента ФМ-4:
Первая ступень: l_1=2,4 м.; b_1=1,8 м.; h_1=0,3 м.
Вторая ступень: l_2=1,8 м.; b_2=1,8 м.; h_2=0,3 м.
Подколонник: l_п=0,9 м.; b_п=0,9 м.; h_п=1,2 м.
Затраты на возведение данного типа фундамента на всё здание с учетом повышающего коэффициента на 2020 г. составляют 3 393 705,9 руб.
Дата добавления: 04.12.2020
КП 3460. Курсовой проект - Производство земляных работ 36 х 48 м в г. Санкт -Петербург | AutoCad

1. УТОЧНЕНИЕ ИСХОДНЫХ ДАННЫХ.
2. ОПРЕДЕЛЕНИЕ ТИПА И ПАРАМЕТРОВ ЗЕМЛЯНОГО СООРУЖЕНИЯ.
3. ОПРЕДЕЛЕНИЕ ОБЪЕМОВ ЗЕМЛЯНЫХ РАБОТ.
3.1. Подсчет объемов работ по срезке растительного слоя.
3.2. Подсчет объемов земляных работ по разработке траншеи (котлована).
3.3. Подсчет объемов по зачистке дна земляного сооружения (разработка недоборов) и планировке.
3.4. Подсчет объемов работ по гидроизоляции фундаментов.
3.5. Подсчет объемов работ по установке фундаментов.
3.6. Подсчет объемов работ по обратной засыпке.
3.7. Подсчет объемов работ по уплотнению обратной засыпки.
4. РАСЧЕТ СХЕМ РАЗМЕЩЕНИЯ ЗЕМЛЯНЫХ МАСС (КАВАЛЬЕРОВ).
5. ВЫБОР ОСНОВНЫХ МАШИН И МЕХАНИЗМОВ ДЛЯ ПРОИЗВОДСТВА ЗЕМЛЯНЫХ РАБОТ.
5.1. Выбор машин для срезки растительного слоя.
5.2. Выбор машин для разработки грунта.
5.3. Выбор вида и подсчет транспортных средств для отвозки грунта.
5.4. Выбор средств водоотлива и расчет необходимого их количества.
5.5. Выбор монтажного крана для установки фундаментов.
5.6. Выбор машин для обратной засыпки и уплотнения грунта.
6. РАЗРАБОТКА КАЛЕНДАРНОГО ПЛАНА ПРОИЗВОДСТВА ЗЕМЛЯНЫХ РАБОТ.
7. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ОХРАНЕ ТРУДА.
8. ЗАКЛЮЧЕНИЕ.
9. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.


Место строительства: Санкт-Петербург
Шаг фундаментов:
• крайних – 6,0 м.;
• средних – 12,0 м.
Количество шагов: 4
Пролет – 24 м.
Количество пролетов: 2
hстакана = 2,3-0,15-0,5 = 1,65 м.

Характеристика грунтов:

























В проекте рассматриваются строительно-монтажные работы по устройству фундаментов для промышленного здания:
• Срезка растительного слоя грунта;
• Отрывка траншей и котлованов;
• Доработка, зачистка дна траншей и котлованов и установка в них фундаментов;
• Транспортирование грунта автосамосвалами;
• Засыпка бульдозером, трамбование грунта вручную и механическими трамбовочными машинами.
Фундамент стаканного типа выполняется в виде отдельных блоков, поэтому разрабатываются отдельные траншеи и котлованы в зависимости от объема оставшегося грунта между смежными фундаментами. Разрабатываемый грунт – суглинок.
Для разработки грунта используется экскаватор с прямой лопатой и ковшом 0,4 м2 – ЭО-3122, который позволяет расположить необходимый грунт в кавальеры, а остальной погружает в автосамосвал КамАЗ-5511, погрузочная высота которого 2,0 м. и вместительность кузова 5,0 м3.
Охрана труда на производстве составлена и разработана на основе СП 12-135-2003 «Безопасность труда в строительстве. Отраслевые типовые инструкции по охране труда» и типовых инструкций по охране труда для работников строительных профессий.
Дата добавления: 04.12.2020
КП 3461. Курсовой проект - Разработка технологии и выбор оборудования для ремонта сваркой стыков линейной части трубопровода | компас

ВВЕДЕНИЕ 4
1 ОБЩИЕ СВЕДЕНИЯ 5
1.1 Характеристика изделия 5
1.2 Материал изделия и его свойства 6
1.3 Свариваемость материала 8
2 ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ 10
2.1 Сварочные материалы 10
2.2 Определение режимов сварки 12
2.3 Технологический процесс сборки и сварки 13
2.4 Контроль качества 17
3 КОНСТРУКТОРСКИЙ РАЗДЕЛ 21
3.1 Основное сварочное оборудование 21
3.2 Вспомогательное сварочное оборудование 23
ЗАКЛЮЧЕНИЕ 26
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 27
ПРИЛОЖЕНИЯ 28

В данном курсовом проекте рассматривается ремонт сваркой линейной части трубопровода при защемлении двух плетей диаметром 1220 мм и толщиной стенки 18 мм, задачей которого ставится:
 выбрать сварочные материалы для сварки труб;
 подобрать наиболее подходящие параметры режима сварки;
 разработать технологический процесс сборки и сварки трубы;
 выбрать основное сварочное и вспомогательное (механическое) оборудование.
Магистральный газопровод – трубопровод, предназначенный для транспортирования природного газа из районов добычи к пунктам потребления. Основное средство передачи газа на значительные расстояния. Магистральный газопровод – один из основных элементов газотранспортной системы и главное составное звено единой системы газоснабжения.
Сооружается из стальных труб диаметром 720 – 1420 мм на рабочее давление 5,4 – 7,5 МПа с пропускной способностью до 30 – 35 млрд. куб. м газа в год. Прокладка магистральных газопроводов бывает: подземная (на глубину 0,8 – 0,1 м до верхней образующей трубы); надземная – на опорах; наземная – в насыпных площадках.
В курсовом проекте рассматривается линейная часть трубопровода для транспортировки газа, так называемый газопровод.
Трубы диаметром 1220 мм для транспортировки газа должны соответствовать ГОСТ 10704-91 «Трубы стальные электросварные прямошовные» <6]. Согласно ГОСТу трубы могут изготавливаться из спокойных малоуглеродистых сталей, а так же низколегированных сталей. Материал для изготовления труб – сталь 14Г2АФ по ГОСТ 27772-2015. <7]


Диаметр обрабатываемых труб, мм                               1020-1420      
Толщина стенки, мм                                                 от 8 до 36
Количество резцедержателей                                           4
Количество центрующих рядов, шт                                    2
Питающее напряжение, В                                                380
Установленная мощность, кВт                                         14,75
Габаритные размеры, мм                                          3380х1570х2000

ЗАКЛЮЧЕНИЕ
В ходе выполнения курсового проекта был рассмотрен трубопровод для транспортировки газа диаметром 1220 мм. Материалом изготовления является сталь 14Г2АФ. Данная сталь относится к классу низколегированных сталей.
Согласно расчетам, приведенным в курсовом проекте, сталь имеет ограниченную свариваемость, при сварке требуется предварительный подогрев и последующая термообработка.
Ремонт трубопровода осуществляется ручной дуговой сваркой. Для сварки корневого, заполняющих и облицовочных слоев швов используется электроды с основным видом покрытия Pipeliner 16P и Pipeliner 18Р, дающие качественное сварное соединение.
В конструкторском разделе было описано оборудование для сварки трубопровода.

Дата добавления: 04.12.2020
КП 3462. Курсовой проект - ТК на производство бетонных работ здания 36 х 17 м в г. Новосибирск | AutoCad

ВВЕДЕНИЕ    
1 Подсчет объемов основных и сопутствующих работ    
1.1 Компоновка опалубочных форм с разработкой схем расстановки щитов и силовых элементов опалубки    
1.2 Спецификация элементов опалубки    
2 Выбор методов производства работ    
2.1 Опалубочные работы    
2.2 Арматурные работы    
3 Подбор автобетононасоса    
4 Подбор крана    
5 Сравнение вариантов    
6 Транспортирование бетонной смеси    
7 Производственная калькуляция работ    
8 Контроль качества и приемка работ    
9 Технико-экономические показатели    
Список литературы    


Вариант 1
Схема плана здания № 1.
1.Размеры в осях: А-Б =6,0 м; Б-В =5,0 м; В-Г =6,0 м; 1-2 =10 м; 2-3 =8 м; 3-4 =18 м.
2.Высота фундамента – 2,6 м.
3.Ширина фундамента – 300 мм.
4.Дальность перемещения 3.
5.Место строительства г.Новосибирск:
- снеговой район – IV;
- ветровой район – III;
- средняя скорость ветра зимой – 8 м/с;
- среднемесячная температура января   -20°С;
- среднемесячная температура июля   +20°С;
6. Условия работ – благоприятные.
 



Дата добавления: 05.12.2020
ДП 3463. Дипломный проект - Разработка завода по капитальному ремонту строительных машин | Компас

Введение 
1. Аналитический обзор 
1.1.Анализ характеристик завода, связанных с ремонтом строительных машин 
1.2. Направление проектирования ремонтного предприятия 
2. Расчетный раздел 
2.1. Анализ ремонтной программы 
2.2.Проектирование ремонтного предприятия 
2.3. Выбор производственной структуры ремонтного завода 
2.4. Расчёт трудоёмкости моторного цеха 
2.5. Распределение трудоемкости по цехам и отделениям 
2.6. Расчет режима работы предприятия 
2.7.Расчет численности работающих.оборудования  
2.8. Расчет количества оборудования и рабочих мест 
2.9. Расчет площадей 
3. Технологический раздел 
3.1. Разработка технологической схемы ремонта экскаватора 
3.2. Компоновка цехов 
3.3. Разработка схемы генерального плана предприятия 
3.4. Разработка технологической схемы восстановления винта 
3.5. Разработка операции восстановления 
4. Проектирование моторного цеха 
5. Разработка технико-экономических показателей завода 
6. Обеспечение безопасности труда работников моторного цеха. Защиты от шума 
6.1. Техника безопасности в моторном цехе 
7. Расчет системы вентиляции 
Список используемой литературы 







Дата добавления: 05.12.2020
КП 3464. Курсовой проект (колледж) - 4-х этажный 12-ти квартирный жилой дом 16,5 х 12,0 м в г. Владимир | Компас

1. Природные условия и генеральный план
1.1 Природные условия
1.2 Генеральный план
2. Объемно-планировочное решение здания
3. Конструктивное решение здания
3.1 Описание фундаментов и основания
3.2 Расчет глубины заложения фундамента
3.3 Характеристика стен
3.4 Теплотехнический расчет стен
3.5 Характеристика перекрытий
3.6 Лестницы
3.7. Характеристика кровли и водоотвода
3.8. Конструкция оконных и дверных проемов
3.9.  Конструкция пола
4. Инженерное оборудование здания
5. Отделка здания
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1. Генплан
2. План типового этажа и разрез
3. Схема расположения плит фундамента
4. Развертки фундаментов
5. Схема расположения плит перекрытия
6. План кровли
7. Схема расположения элементов стропильной системы крыши
8. Спецификация элементов стропильной системы крыши
9. Ведомость перемычек


Запроектировано:
– высота этажа — 3000 мм;
– высота всего здания — 15300 мм;
Выбранная мною объемно-планировочная система – смешанная система, которая сочетает в себе элементы различных систем. Здание спроектировано четырехэтажным на 12 квартир.

В данной работе в качестве основания используется суглинок. При проектировании данного здания устраивались сборные ленточные фундаменты из фундаментных подушек ФЛ 10.24-2, ФЛ 10.12-2, ФЛ 10.8-2 и фундаментных блоков ФБС 24.4-6т, ФБС 12.4-6т и ФБС 9.4-6т, длина которых 2380, 1180 и 880 мм, высота 280 и 580 мм, а ширина 300, 400, 500 и 600 мм.
Стены наружные и поперечные продольные выполняют несущую и ограждающую функцию, то есть воспринимают нагрузки от собственной массы, постоянные и временные нагрузки от перекрытий, крыши, воздействия ветра и т.д.. Внешние стены выполнены из кирпича керамического толщиной 640 мм, стены внутренние – кирпич керамический толщиной 380 мм. Перегородки – это вертикальные ограждающие конструкции, отделяющие одно помещение от другого. Толщина перегородок из кирпича в расчетной работе принята равной 120 мм.
Междуэтажные перекрытия выполнены из типовых сборных железобетонных плит толщиной 220 мм с круглыми пустотами по серии 1.141-1 вып.63.
Кровля запроектирована двускатная. Покрытие – скатное чердачное, стропильные щиты.
рубероидный ковер по железобетонным панелям покрытия. Уклон 21º.
Дата добавления: 05.12.2020
КП 3465. Курсовой проект - Механосборочный цех 97 х 61 м в г. Санкт-Петербург | AutoCad

Введение 3
1. Обоснование планировочного решения промышленного здания. 4
2. Обоснование конструктивного решения промышленного здания. 5
2.1. Фундаменты и фундаментные балки. 5
2.2. Колонны. 6
2.3. Стены. 6
2.4. Несущие конструкции покрытия (фермы). 9
2.5. Подкрановые балки. 10
2.6. Связи. 10
2.7. Покрытие с водоотводом. 10
2.8. Конструкция решения пола. 15
2.9. Двери и ворота. 15
2.10. Освещение. 15
2.11. Бытовые помещения. 19
3. Заключение. 20
4. Список литературы. 21

Здание состоит из четырех блоков, два блока пролетом по 18 м и два других блока 24 м. Общая длина здания составляет 97 м.
Исходя из высоты помещения, грузоподъемности мостового крана и ширины пролетов, выбраны стельные двухветвевые колонны для пролетов 24 м и стальные колонны постоянного сечения для пролетов 18 м. Колонны высотой 16,2 м и 9,6 м. В качестве стропильных конструкций выступают стальные стропильные фермы из горячекатаных профилей пролетом 24 и 18 м. Покрытие - профнастил Н79 по прогонам из швеллеров №18.

Промышленного здание каркасной системы.
Каркас одноэтажного здания состоит из поперечных рам, которые обеспечивают жесткость здания в поперечном направлении, образованных защемленными в фундаментах стальными колоннами крайних рядов в блоках шириной 24 м с шагом 6 м и стальных колонн крайних рядов в блоках шириной 18 м. Сетка колонн принята в соответствии с заданными объемно-планировочным решением (длиной 97м, пролетами 24 м и 18 м).
Из-за большой длины здания, предусматривается устройство температурного шва по оси 5.
Данный цех оборудован четырьмя мостовыми кранами грузоподъемностью 20 50/10 тонн.
В проекте приняты монолитные железобетонные фундаменты стаканного типа под колонны промышленного здания, которые состоят из подколонника и двухступенчатой плитной части и одноступенчатой плитной частью под фахверковые колонны. Подошва фундамента располагается на отметке -2,8 и -2,5 м.
В рассматриваемом здании в блоках шириной 24 м и 18 м принят шаг средних колонн 6 м и крайних колонн равным 6м.
Стены – однослойные панели из легкого бетона. Панели высотой 1,185 и 1,785 м, расположены с шагом 6 м.
Для пролетов 24 м стальные стропильные фермы из горячекатаных профилей. Шаг стропильных ферм 6м.
В данном проекте использованы стальной сварной двутавр верхним и нижним поясом соответственно 400х16 мм и 200х10 мм, а также стенкой 1240х10 мм для пролетов 24 м и стальной сварной двутавр верхним и нижним поясом соответственно 320х14 мм и 250х10 мм, а также стенкой 740х8 мм.
В данном проекте использованы крестообразные связи между крайними средними колоннами и вертикальные связи между фермами.
В покрытие применяется:
1) Профнастил, который укладывается на прогоны из швеллеров.
Уклон кровли в проекте равен 1,5%.
Дата добавления: 05.12.2020


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.