Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


c%20

Найдено совпадений - 2600 за 1.00 сек.


РП 1366. АТХ Техническое перевооружение Центрального теплового пункта с установкой котлов для отопления и горячего водоснабжения | AutoCad

Котлы водогрейные жаротрубные автоматизированные КВ-Г-4-110Н тепловой мощностью 4,0 МВт (3,44 Гкал/час) в количестве 3 агрегатов с газовой горелкой Ecoflam BLU 6000.1 PR TL SGT 230-400-50 NS оснащаются автоматикой безопасности в объеме, предусмотренном пунктом 15.9 СП 89.13330.2012 «Котельные установки», обеспечивающей защиту (прекращение подачи топлива к горелке) и светозвуковую сигнализацию с фиксацией причины срабатывания защиты при аварийном отклонении от заданных значений следующих параметров:
повышение или понижение давления газообразного топлива перед горелками;
понижение давления воздуха перед горелками;
повышение давления в топке котла;
погасание факела горелки;
повышение температуры воды на выходе из котла;
повышение или понижение давления воды на выходе из котла;
уменьшение установленного наименьшего расхода воды через котел;
неисправность цепей защиты.
В котельной устанавливается автоматическая система контроля загазованности САКЗ-МК-3-2 в комплекте с сигнализаторами загазованности природным и угарным газом, блоком сигнализации и управления котельной БСУ-К и главным быстродействующим запорным клапаном газоснабжения котельной, а также с универсальным GSM извещателем.
Система САКЗ-МК-3 производит закрытие главного быстродействующего запорного клапана газоснабжения котельной при:
- загазованности, превышающей установленные значения «Порог 2» сигнализаторов природного и угарного газа;
- срабатывании датчиков пожарной сигнализации;
- отключении электроэнергии;
- неисправности системы, в том числе сигнализаторов, или обрыве кабелей связи.

В котельной предусматривается светозвуковая сигнализация с выводом визуальной информации (световые индикаторы и электрическая сирена) на ЦШУ (пульт блока сигнализации и управления котельной БСУ-К системы автоматического контроля загазованности САКЗ-МК-3), а также на удаленный диспетчерский пункт по GSM каналу.

В котельной предусматривается автоматизация следующих процессов:
- поддержание заданной температуры теплоносителя на выходе из котла;
- автоматическое регулирование температуры воды, поступающей в сети централизованного теплоснабжения по температурному графику в зависимости от температуры наружного воздуха;
- поддержание заданной температуры воды, поступающей в систему ГВС, независимо от температуры наружного воздуха;
- поддержание статического давления в сети централизованного теплоснабжения, внутреннего и наружного контура ГВС;
- автоматическое поддержание давления воды после сетевых насосов и насосов наружного контура ГВС;
- поддержание постоянного давления в водопроводе котельной на технологические нужды регулятором давления «После себя».
- отключение систем общеобменной вентиляции от сигнала «Пожар» в котельной;
- автоматическое включение резервных насосов сетевых, насосов внутреннего и наружного контура ГВС, насосов исходной воды в случаях аварийного отключения работающего насоса или при падении давления в трубопроводе после насоса, переключение с одного насоса на другой через заданные промежутки времени для равномерного износа насосов;
- автоматическое управление насосами рециркуляции для защиты от снижения температуры теплоносителя на входе в котел ниже установленного значения.

Проектируются следующие шкафы:
Шкафы управления котлами ШУК1…3
Шкаф управления сетевыми насосами ШУСН
Шкаф управления насосами наружного контура ГВС ШУН1
Шкаф управления насосами исходной воды и ХВО ШУП
Шкаф управления насосами рециркуляции ШУНР
Шкаф управления циркуляционными насосами внутреннего контура ГВС ШУН2
Шкаф погодозависимой автоматики ШПА
Шкаф коммерческого учета тепловой энергии ШТС
Узел учета газа
Шкаф управления вытяжной вентиляцией котельной ШУВВ
Блок сигнализации и управления котельной БСУ-К
Шкаф управления приточной установкой котельной П1 ШУП1.1(ШУП1.2)
Шкаф управления приточной установкой котельной П2(П3) ШУП2.1(2.2,3.1,3.2)
Шкаф управления огнезадерживающими клапанами ШУОК


Функциональная схема автоматизации котельной
Функциональная схема автоматизации котельной. Газоснабжение
План автоматизации котельной, расположение КИПиА и управляемого электрооборудования на отметке 0.000. М1:50
План автоматизации котельной, расположение КИПиА и управляемого электрооборудования на отметке 4.800. М1:100
План автоматизации котельной. Узел коммерческого учета тепловой энергии. М1:50
План автоматизации котельной, прокладка сетей диспетчеризации на отметке 0.000. М1:50
Схема соединения внешних проводок шкафов управления котельной
Шкаф управления насосами наружного контура ГВС ШУН1
Шкаф управления сетевыми насосами ШУСН
Шкаф управления насосами исходной воды и ХВО ШУП
Шкаф управления насосами рециркуляции ШУНР
Шкаф управления циркуляционными насосами внутреннего контура ГВС ШУН2
Шкаф погодозависимой автоматики ШПА
Шкаф коммерческого учета тепловой энергии ШТС
Блок сигнализации и управления котельной БСУ-К
Шкаф управления вытяжной вентиляцией котельной ШУВВ
Узел учета газа. Схема внешних проводок
Шкаф управления огнезадерживающими клапанами ШУОК
Дата добавления: 13.05.2019
КП 1367. Курсовой проект - Эксплуатация трубопроводных систем | AutoCad

Введение 3
1. Описание технологической схемы и узлов АГРС «Энергия-3» 4
2. Описание блоков и технические характеристики АГРС «Экс-Форма» 7
3. Истечение жидкости через отверстие в трубопроводе 13
Заключение 21
Список используемой литературы 22


Станция работает по следующей схеме. Газ высокого входного давления проходит через кассетный фильтр (в котором фильтрующим элементом является сетка), где очищается от механиче­ских примесей. Затем газ поступает в подогреватель ПГА-100, где нагре­вается с целью предотвратить выпадение гидратов при редуцировании в змеевике радиационным излучением горелки и теплом уходящих газов. Аппаратура, размещенная в шкафу КИП и А, осуществляет контроль за нормальной работой подогревателя по наличию пламени запальника и температурному режиму.
Подогретый газ проходит в блок редуцирования, имеющий две реду­цирующие нитки: рабочую (нижнюю) и резервную (верхнюю), которые равноценны как по составляющему их оборудованию, так и по пропуск­ной способности станции.
Система редуцирования имеет последовательно-параллельное соеди­нение регуляторов давления типа РДУ-80-01 и состоит из одного рабоче­го и трех резервных регуляторов. Редуцирование давления газа осущест­вляется в одну ступень. Система редуцирования работает по методу об­легченного резерва. Рабочий регулятор на рабочей нитке настроен на выходное давление Рвых, расположенный перед ним резервный на рабочей нитке и первый из регуляторов на резервной -настроены на давление 1,ОSр.ых, а поэтому в период нормальной работы станции их регулирую­щие клапаны полностью открыты. Второй регулятор на резервной нитке настроен на давление 0,95Р.ых, вот почему в период нормальной работы станции его клапан закрыт.
Контроль за входным и выходным давлением в блоке редуцирования осуществляется с помощью электроконтактных манометров ВЭ-lбрб, размещенных в обогреваемом шкафу.
В блоке редуцирования происходит снижение давления топливного газа для горелок подогревателя до 100-200 мм вод. ст.
Из блока редуцирования газ низкого давления проходит в расходомерную нитку блока измерения расхода, в котором установлен дифманометр, а затем поступает в блок переключения.

Габаритные размеры (мм) и масса блоков АГРС «Энергия-3»




Газораспределительная станция (ГРС) является основным объектом в системе магистральных газопроводов, функцией которой является понижение давления газа в трубопроводе и его подготовка для потребителя. Современные ГРС - сложные, высокоавтоматизированные и энергоемкие объекты. Эксплуатация газопроводов может происходить при различных режимах, смена которых происходит при изменении вариантов включения в работу агрегатов. При этом возникает задача выбора наиболее целесообразных режимов, соответствующих оптимальной загрузке газопровода.
С развитием электронной вычислительной техники стало возможным автоматизированное управление ГРС. В настоящее время на объектах ГРС широко используются как отечественные системы автоматизации, так и зарубежные контрольно-измерительные приборы, системы автоматики и телемеханики.
Территория газораспределительной станции должна быть ограждена и оснащена охранной сигнализацией. Газораспределительная станция должна размещаться за пределами перспективной застройки населенного пункта согласно строительным нормам.
Обслуживание газораспределительной станции должно проводиться на основании «Правил технической эксплуатации газораспределительных станций магистральных газопроводов».
В большинстве случаев, ГРС были построены в середине 1970-х годов. В целом, срок эксплуатации российской газотранспортной системы приближается к полувеку: 14% газопроводов отработали более 33 лет и требуют немедленной замены, еще 20% приближаются к этому возрасту, 37% построены 10-20 лет назад и еще 29% моложе 10 лет.
Дата добавления: 13.05.2019
КП 1368. Курсовой проект - Технологическая карта на возведение монолитных железобетонных конструкций надземной части 12 - ти этажного жилого здания в г. Владивосток | AutoCad

ВВЕДЕНИЕ
1.ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ
2.АРХИТЕКТУРНО-ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ И КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ЗДАНИЯ
3. ОПЕРЕДЕЛНЕИЕ ОБЪЕМОВ РАБОТ
4. ВЫБОР ТИПА И КОНСТРУКТИВНОЙ СИСТЕМЫ ОПАЛУБКИ
5. РЕСУРСНОЕ ПРОЕКТИРОВАНИЕ
6. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА БЕТОННЫХ РАБОТ
7. ТЕХНОЛОГИЧЕСКАЯ КАРТА НА ВОЗВЕДЕНИЕ МОНОЛИТНЫХ КОНСТРУКЦИЙ ТИПОВОГО ЭТАЖА
8. КАЛЕНДАРНЫЙ ПЛАН ВЫПОЛНЕНИЯ РАБОТ ПО ВОЗВЕДЕНИЮ СТЕН И ПЕРЕКРЫТИЙ НАДЗЕМНОЙ ЧАСТИ ЗДАНИЯ
9. ВЫПОЛНЕНИЕ ФРАГМЕНТА ОБЪЕКТНОГО СТРОЙГЕНПЛАНА
СПИСОК ЛИТЕРАТУРЫ




Предусматривается применение унифицированной разборно-переставной опалубки КРАМОС.
В состав работ, рассматриваемых технологической картой входят:
 арматурные;
 опалубочные;
 бетонные, в том числе вспомогательные: подача материалов и уход за бетоном.
Дата добавления: 14.05.2019
ДП 1369. Дипломный проект - Автоматизированная автономная система полива зеленых насаждений | Компас

Также в данной работе обозреваются существующие системы полива, существующие датчики влажности. Реализуется датчик влажности, основанный на емкостном принципе работы. Проводится его тестирование и сравнение с некоторыми другими доступными по цене датчиками влажности, приводятся наглядные графики полученных результатов, заключение по результатам теста датчиков.


ВВЕДЕНИЕ 6
1 Анализ научной и научно-технической литературы и патентов 10
1.1 Реализованные автоматические системы управления поливом зеленых насаждений 10
1.2 Проблема измерения влажности почвы 12
2 Расчетная часть проводимого исследования 17
2.1 Разработка программного обеспечения 17
2.1 Разработка программы управления для промышленного контроллера 18
2.1.1 IF_1 – блок готовности системы к поливу 18
2.1.2 IF_2 – блок сброса таймера реального времени 19
2.1.3 IF_3 – блок таймера полива 20
2.1.4 IF_4 – блок регулировки длительности цикла полива каждого клапана 21
2.1.5 IF_5 – пользовательский функциональный блок формирования времени повтора опроса системы о готовности к поливу 24
2.1.6 MODEM3G – блок – шлюз отправки основных параметров в сеть 25
2.2 Основная программа PLC_PRG (PRG). 27
2.2.1 Система функциональных блоков LT, GT, AND 27
2.2.2 Система функциональных блоков AND, RTC, DT_TO_REAL 28
2.3 Панели экрана визуализации 28
2.3.1 Панель мониторинга клапанов 29
2.3.2 Панель управления/мониторинга внешних условий 29
2.4 Расчет параметров энергопотребления системы 30
3 Проектирование системы управления 34
3.1 Описание технологического процесса 34
3.2 Перечень контролируемых и регулируемых параметров для системы автоматизации процесса очистки метана 35
3.3 Выбор регулирующих и функциональных средств автоматизации, их описание 36
3.1.1 ОВЕН ПЛК150 36
3.1.2 Ввод аналоговых сигналов ОВЕН МВ110-8А 39
3.1.3 Модуль дискретного вывода МУ110-16К 42
3.2 Выбор первичные преобразователи и исполнительные механизмы, их описание 45
3.2.1 Термопреобразователь сопротивления ОВЕН ДТС 3005-PT1000.B2 45
3.2.2 Датчик давления общепромышленный PTE5000 46
3.2.3 Датчик дождя Rain-Clik 48
3.2.4 Счетчик воды ВСХд-хх 50
3.2.5 Клапан электромагнитный SMART SF62321 DN10 G3/8" 51
3.2.6 Ротор 5004-PC-3.0 (регул. сектор, радиус от 7,6 м до 14,3 м) 53
3.2.7 Преобразователи напряжения 12/24 вольт SDC-310 54
3.2.8 Контроллер заряда EPSolar VS1024BN 10A, 12/24 V 55
3.2.9 Промежуточное реле, 1 перекидной контакт 16А, управление 24V AC/DC Евроавтоматика PK-1P 58
3.2.10 Гелевая аккумуляторная батарея Delta GX12-75 59
3.2.11 Держатель предохранителя ASK2 LD бежевый 60
3.2.12 Промышленный 3G шлюз GRP-530M 61
3.3 Щитовое оборудование 62
3.3.1 Вентилятор EBM-PAPST 3214JH 62
3.3.2 Терморегулятор JWT 6011 +5°C...+60°C 63
3.4 Проектирование щита управления и монтаж средств автоматизации 64
3.4.1 Монтаж средств автоматизации в щите управления Elbox EMS. 64
3.4.2 Монтаж датчиков и исполнительных механизмов. 66
ПРИЛОЖЕНИЕ А 67
ПРИЛОЖЕНИЕ Б 68
ПРИЛОЖЕНИЕ В 69

1.Схема автоматизации функциональная
2. Схема внешних соединений и подключений
3. Щит КИПиА
4. Код программы, написанный на языке CFC в программном средстве CoDeSys v2.3
5. Блок-схема программы реализации полива
6. Визуализация программы в программном средстве CoDeSys v2.3
7. Структурная схема системы управления
8.Схема секторов полива

В качестве примера был взят городской участок «Площадь Труда» города Волжского. Площадь участка под газон составляет 2400 м2, площадь цветочных клумб составляет 726 м2.

Написанная программа (на языке CFC с внедрением пользовательских функциональных блоков, написанных на языке ST в программном средстве CoDeSys v2.3.компании ОВЕН. Программа содержит пять пользовательских функциональных блоков, написанных на языке ST.) выполняет следующий перечень действий: сигнализирует о недавно прошедшем или идущем дожде, контролирует температуру воздуха окружающей среды, анализирует состояние водопроводной системы на способность осуществления полива посредством контроля давления в основной поливной магистрали, анализирует влажность почвы, сигнализируя о её надобности или ненадобности в увлажнении, автоматически составляет график полива исходя из показаний датчиков влажности, осуществляет полив (если такой требуется) в заданное пользователем время, передаёт основные параметры системы в сеть для удобного мониторинга активности системы полива, мониторинга значений влажности почвы, мониторинга сбоев программы или выхода из строя сантехнической части системы и т.д. Также в программе предусмотрена визуализация с возможностью включения режима «отладки» процесса полива. Визуализация содержит все необходимые элементы управления для моделирования внешних воздействий и контроля правильности работы системы полива.

В соответствие с запрограммированным графиком полива, контроллер опрашивает датчик давления в водопроводе. Если давления нет, система запрещает полив участка с последующей регистрацией события. Если давление находится на должном уровне, контроллер опрашивает датчик температуры окружающей среды. Если температура меньше 8 °С, система отменяет полив с последующей регистрацией события. Если температура больше заданного значения, система начинает процесс полива.
Контроллер опрашивает датчики влажности секторов участка полива. В соответствии с показаниями датчиков, контроллер производит временную коррекцию полива по усредненному значению влажности. После осуществления полива дождевателями, система открывает клапан, стоящий на линии капельного полива цветов, рассаженных по периметру участка полива. Так же в разных концах данной линии стоят датчики влажности, предназначенные для контроля целостности водопроводной линии. После завершения цикла полива всего участка, контроллер входит в условный спящий режим до следующего полива, запрограммированного в контроллер.

Назначение контроллера ОВЕН ПЛК150:
- Создание систем управления малыми и средними объектами.
- Построение систем диспетчеризации.
Особенности ОВЕН ПЛК150:
- Компактный DIN-реечный корпус.
- Дискретные и аналоговые входы/выходы на борту.
-Наличие последовательных портов (RS-485, RS-232) и Ethernet.
- Расширение количества точек ввода/вывода осуществляется путем подключения внешних модулей ввода/вывода по любому из встроенных интерфейсов.
Конкурентные преимущества ОВЕН ПЛК150:
- Отсутствие ОС, что повышает надежность работы контроллеров.
- Скорость работы дискретных входов – до 10 КГц при использовании подмодулей счетчика.
- Большое количество интерфейсов на борту: Ethernet, последовательных порта.
- Расширенный температурный диапазон работы: от –20 до +70 С.
- Встроенный аккумулятор, позволяющий «пережидать» пропадание питания: выполнение программы при пропадании питания и перевод выходных элементов в «безопасное состояние».
- Встроенные часы реального времени.
- Контроллер поддерживает работу с нестандартными протоколами по любому из портов, что позволяет подключать такие устройства как электро-, газо-, водосчетчики, считыватели штрих-кодов и т.п.
Программирование контроллеров ОВЕН ПЛК150 осуществляется профессиональной системой программирования CODESYS v.2. Система программирования CODESYS для покупателей контроллеров ОВЕН предоставляется бесплатно.
Дата добавления: 16.05.2019
РП 1370. АС Медицинский центр в Республике Татарстан | AutoCad

Наружные стены здания выше уровня гидроизоляции: кирпич керамический 250мм марки КР-р-по 1НФ/100/2.0/F25/ГОСТ 530-2012(ж/б стены 200мм), утеплитель типа "Венти-Баттс" (Rockwool)-150мм, навесной фасад.
Внутренние перегородки из гипсокартона марки ГКЛВ по системе ТИГИ Knauf, за исключением перегородок тамбуров, лифтовых холлов и отдельных помещений согласно плану, которые должны быть выполнены из полнотелого керамического кирпича марки КР-р-по 1НФ/100/2.0/F15/ГОСТ 530-2012. Стояки ВК и ОВ обшить коробом, обшивку выполнить из гипсокартона марки ГКЛВО по системе ТИГИ Knauf.


Общие данные.
Кладочный план подвала.
Кладочный план 1 этажа.
Кладочный план 2 этажа.
Кладочный план 3 этажа.
Кладочный план 4 этажа.
Кладочный план технического этажа.
План кровли.
Разрез 1-1, Разрез 2-2.
Лестница Л-1, Л-2
Пожарная лестница ПЛ-1
Вход №1. Фундамент
Вход №1
Вход №1. Плиты П-1...П-4
Вход №1. Колонны К1, К-2
Вход №2. Фундамент
Вход №2
Вход №2. Плиты П-1...П-3
Вход №2. Колонны К-1...К-4
Вход №3
Вход №3. Покрытие
Приямок №2
Приямок №3
Приямок №4
Приямок №1
Приямки подвала.
Сечения б-б, в-в, г-г.
Вентшахты ВШ-1...ВШ-4
Вентшахты ВШ-5...ВШ-7
Вентшахты ВШ-8, ВШ-9
Вентшахты ВШ-10
Подземный канал с вентшахтой подвала
Заказ на лифт №1
Заказ на лифт №2
Заказ на лифт №3
Дата добавления: 16.05.2019
РП 1371. ВК 9 - ти этажный 4 - х секционный жилой дом | АutoCad

Источником водоснабжения жилого дома (I этап строительства) является существующий водопровод ø160мм, проходящий с южной стороны участка и существующий водопровод ø200мм. Водоснабжение жилого дома осуществляется 1 вводом Ø75мм (в секции №3) от проектируемой кольцевой сети водопровода. Наружные сети запроектированы из труб ПЭ фирмы "Вавин".
Перед вводом в жилой дом на сети устанавливается безколодезная задвижка Ø65мм с устройством ковера для отключения подачи воды при ремонте.
Система внутреннего противопожарного водоснабжения выполнена сухотрубной с выведенным наружу патрубком Ø 89 (77) мм для подключения передвижной пожарной техники (секции 1,3,4).
Наружное пожаротушение предусмотрено от 2х пожарных гидрантов: существую-щего и проектируемого. Расход воды составляет 20 л/сек.
В качестве средств первичного пожаротушения проектом предусматривается уста-новка пожарных кранов в каждой квартире в санитарных узлах, оборудованных распы-лителем ø19 мм со шлангом длиной 15 м.

Жилой дом:
Q=61,34 м³/сут, в т.ч. 0,34 м³/сут на полив,
q=7,35 м³/час,
q=3,06 л/сек

Гарантированный напор в сети водопровода составляет 20м.вод.ст. Требуемый напор составляет 42 м.вод.ст. Для создания необходимого напора в сети подвале в по-мещении насосной и водомерного узла в секции №3 устанавливается насосная уста-новка повышения давления Pedrolla СB2-2CP 25/140Н из двух насосов с Q=9,60 м³/час, H=34,0 м.вод.ст, N= 1,1 кВт (один рабочий, один резервный).
Для гашения напора на 1-5 этажах на вводах перед каждой квартирой устанавли-ваются регуляторы давления.
В каждой квартире устанавливаются водомеры Ø15мм.
Горячее водоснабжение жилых квартир предусмотрено от двухконтурных газовых отлов, которые установлены на кухне. Система горячего водопровода монтируется из полиэтиленовых труб Ø16-20 мм фирмы "Акватерм". Участки сети горячего водопровода, проложенные в полу, заключаются в гофрированный кожух.

План подвала с сетями В1. Секция 1
План подвала с сетями В1. Секция 2
План подвала с сетями В1. Секция 3
План подвала с сетями В1. Секция 4
План 1 этажа с сетями В1, Т3. Секции 1,3,4
План 1 этажа с сетями В1, Т3. Секция 2
План 2 этажа с сетями В1, Т3. Секции 1,3,4
План 2 этажа с сетями В1, Т3. Секция 2
План 3-7 этажей с сетями В1, Т3. Секции 1,3,4
План 3-7 этажей с сетями В1, Т3.Секции 2
План 8 этажа с сетями В1, Т3. Секции 1,3,4
План 8 этажа с сетями В1, Т3. Секция 2
Принципиальная схема водоснабжения
План с наружными сетями В1, ВО.
Масштаб 1:500
Принципиальная схема наружного водопровода

Канализация:
Отвод бытовых стоков предусмотрен в проектируемую внутриплощадочную сеть бытовой канализации ø160мм с последующим подключением в существующий коллектор ø315мм, проходящий с южной стороны участка.

План подвала с сетями К1, К2. Секция 1
План подвала с сетями К1, К2. Секция 2
План подвала с сетями К1, К2. Секция 3
План подвала с сетями К1, К2. Секция 4
План 1 этажа с сетями К1, К2. Секции 1,3,4
План 1 этажа с сетями К1, К2. Секция 2
План 2 этажа с сетями К1, К2. Секции 1,3,4
План 2 этажа с сетями К1, К2. Секция 2
План 3-7 этажей с сетями К1, К2. Секции 1,3,4
План 3-7 этажей с сетями К1, К2. Секция 2
План 8 этажа с сетями К1, К2. Секции 1,3,4
План 8 этажа с сетями К1, К2. Секция 2
План кровли с сетями К1, К2. Секция 1
План кровли с сетями К1, К2. Секция 2
План кровли с сетями К1, К2. Секция 3
План кровли с сетями К1, К2. Секция 4
Принципиальная схема системы канализации. Секция 1
Принципиальная схема системы канализации. Секции 2,3,4
План с наружными сетями К1, К2, К2.1 Д1. Масштаб 1:500
Принципиальная схема наружных сетей бытовой канализации
Принципиальная схема наружных сетей дождевой канализации, дренажа
Дата добавления: 16.05.2019
ДП 1372. Дипломный проект (колледж) - Разработка проекта электроснабжения и монтажа электрооборудования котельной | Компас

Предмет исследования: электроснабжение и монтаж электрооборудования котельной.
Цель исследования:проектирование системы электроснабжения и монтаж электрооборудования котельной.
Задачи исследования:
1. Рассчитать силовые и осветительные нагрузки цеха, характеристики промышленного оборудования, заземления котельной
2. Спроектировать схему электроснабжения.
3. Разработать мероприятия по монтажу итехнике безопасности электрооборудования котельной.
4. Рассчитать экономический эффект от внедрения данного электрооборудования.
Методы исследования: изучение технической литературы, расчетов по установленной методике.
Практическая значимость: результаты расчетов могут быть использованы при проектировании внутреннего электроснабжения котельной.


ВВЕДЕНИЕ 6
1 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 8
1.1 Обзор используемых источников 8
1.2 Краткое описание технологического процесса объекта 8
1.3 Электроснабжение цеха
1.4 Расчет силовой и осветительной нагрузок цеха
1.4.1 Для группы А
1.4.2 Для группы Б
1.4.3 Для цеха в целом
1.5 Выбор числа, мощности и места расположения цеховой трансформаторной подстанции с учетом компенсации реактивной мощности
1.5.1 Выбор числа и мощности цеховой трансформаторной подстанции
1.5.2 Выбор оптимального числа цеховых трансформаторов
1.5.3 Выбор места расположения цеховой трансформаторной подстанции
1.6 Расчет распределительной сети, выбор и расчет защитных устройств на стороне низкого напряжения
1.6.1 Выбор распределительных устройств
1.6.2 Выбор аппаратов защиты
1.7 Выбор сечения проводов и жил кабелей
1.7.1 Выбор проводов питающего внутришлифовального станка
1.8 Расчет освещения цеха
1.9 Расчет заземляющего устройства электроустановок 9
ГЛАВА 2 ОРГАНИЗАЦИОННАЯ ЧАСТЬ 28
2.1 Преобразователь частоты серии ЕI-7011
2.1.1 Общие сведения 28
2.1.2 Монтаж частотного преобразователя в шкафу
2.1.3 Примеры применения частотного преобразователя
2.3 Охрана труда, техника безопасности и охрана окружающей среды 30
2.4 Экономическая часть 33
ЗАКЛЮЧЕНИЕ 38
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 40

Котельный цех – это производственное помещение в структуре предприятия нефтеперерабатывающего завода, предназначенное для производства тепловой энергии, размещения котельного оборудования и персонала. Котельный цех является обособленным строением, расположенным в доступной близости от нескольких крупных потребителей тепла (производственные цеха, ангары, склады, административно бытовые корпуса, гаражи), либо пристроенным к крупному промышленному зданию (ангару, складу) сооружением. В качестве проектируемого цеха взят котельный цех №2, который обеспечивает паром и ГВС технологические установки: КАС, ЦВК, ТК-4, бойлерная цеха.
Оборудование котельного цеха №2 включает в себя насосы котлового контура (а в некоторых случаях и остальных контуров), теплообменники, расширительные баки, запорную арматуру, фильтры, аппараты ХВО и автоматику.

Технические данные электроприемников котельного цеха №2:




В данной выпускной квалификационной работепроизведён расчёт электроснабжения и монтажа электрооборудованиякотельной, целью которого является выбор наиболее оптимального варианта схемы, параметров электросети и её элементов, позволяющих обеспечить необходимую надёжность электропитания и бесперебойной работы цеха.
В ходе выполнения работы мы произвели расчёт электрических нагрузок методом коэффициента максимума.
Выбрали напряжение силовой и осветительной сети. С учётом требований техники безопасности, принимается напряжение 380/220 В при совместном питании силовой и осветительной нагрузки. Выбрали схему распределительной сети котельной. Так как нагрузка цеха, представленная в основном электрозадвижками, имеет распределённый характер, преобладающая категория надёжности электрооборудования ПУЭ – 2-я, применяем магистральную схему силовой сети с распределёнными нагрузками.
В ходе работы были выбраны трансформаторы мощностью по 1000кВА типа ТМ-400/10 – трансформатор маслянный. Выбрали наиболее надёжный вариант сечения проводов и кабелей питающих, распределительных линий и защитные устройства на стороне низкого напряжения.
Произвели расчёт искусственного заземления.
На основе произведённых расчётов можно сделать вывод, что выбрали наиболее оптимальный и рациональный вариант электроснабжения котельной.
Дата добавления: 16.05.2019
КП 1373. Курсовой проект (колледж) - Монтаж стального газопровода через дорогу методом прокола | AutoCad

В процессе выполнения курсовой работы были определены объёмы земляных работ, калькуляции трудовых затрат, технико-экономических показателей. Рассмотрена охрана труда и техника безопасности проведения работ. Также проведён выбор строительных машин.
Выбраны основные мероприятия по охране труда по каждому виду работ.
Курсовая работа выполнена с учётом действующей нормативно-технической документации: СНиПов и ГЭСНов.
Описана технология производства работ, т. е. последовательность и принцип выполнения строительных процессов.

Исходные данные:
1. Диаметр рабочего газопровода: 530 мм
2. Условия строительства: полевые
3. Материал газопровода: трубы стальные электросварные прямошовные ГОСТ 10704-76, длина трубы 8 м;
4. Глубина заложения трубопровода: 2 м
5. Длина бестраншейного перехода: 30 м
6. Тип грунта: супесь
7. Район проведения работ: Тюменская обл.
8. Сезон проведения робот: весеннее время

Содержание:
Введение
ГЛАВА 1 ТЕХНОЛОГИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ
1.1 Исходные данные
1.2 Выбор необходимого оборудования
1.3 Определение объемов земляных работ
1.4 Объем работ по монтажу футляра и рабочего газопровода
1.5 Выбор строительных машин и расчет ширины рабочей зоны
1.6 Технология производства работ
1.6.1 I этап. Подготовка участка и земляные работы
1.6.2 II этап. Прокладка защитного кожуха (футляра) под дорогой
1.6.3 III этап. Протаскивание рабочей плети газопровода в защитный кожух
1.7 Испытание газопровода
1.8 Засыпка траншеи бульдозером
1.9 Основные мероприятия по охране труда
1.9.1 Земляные работы
1.9.2 Монтажные работы
1.9.3 Изоляционные работы
1.9.4 Испытание газопроводов
ГЛАВА 2 ОРГАНИЗАЦИЯ СТРОИТЕЛЬНО-МОНТАЖНЫХ РАБОТ
2.1 Калькуляция трудовых затрат
2.2 Нормокомплект для производства работ
2.3 Ведомость материально-технических ресурсов
2.4 Технико-экономические показатели
2.5 Охрана труда и техника безопасности
Заключение
Список литературы

Заключение:
В курсовой работе запроектирован газопровод среднего давления из стальных труб диаметром 530 мм ГОСТ 10704-76 под дорогой в футляре, проложенный методом прокола. Газопровод проложен в полевых условиях (грунт – супесь).
В процессе выполнения курсовой работы были определены объёмы земляных работ, калькуляции трудовых затрат, технико-экономических показателей. Рассмотрена охрана труда и техника безопасности проведения работ. Также проведён выбор строительных машин: одноковшовый экскаватор CAT 320DL, трубоукладчик «Четра-121» ТГ-121-Я.
Выбраны основные мероприятия по охране труда по каждому виду работ.
Курсовая работа выполнена с учётом действующей нормативно-технической документации: СНиПов и ГЭСНов.
Описана технология производства работ, т. е. последовательность и принцип выполнения строительных процессов.
Можно выделить следующие достоинства прокладки кожуха методом прокола:
- не требует рытья траншеи;
- работа, проведенная таким методом обходится дешевле;
- требует меньшего числа рабочих;
- при наличии необходимого оборудования работа проходит значительно быстрее;
- этот способ безопаснее и для персонала, и для окружающей среды;
- работы можно проводить в любое время года.
Дата добавления: 18.05.2019
КП 1374. Курсовой проект - Электрооборудования механизма подъема мостового крана промышленного предприятия | АutoCad


Введение 5
1. Расчет мощности и предварительный выбор электродвигателя 7
2. Выбор двигателя с короткозамкнутым ротором 10
3. Проверка выбранного двигателя по нагреву и перегрузочной способности 11
4. Выбор двигателя с фазным ротором 15
5. Проверка выбранного двигателя по нагреву и перегрузочной способности 16
6. Разработка системы управления электроприводом механизма подъема мостового крана. 20
6.1 Разработка и описание системы управления электроприводом с КЗ ротором. 20
6.1.1 Выбор преобразователя частоты 20
6.1.2 Описание системы управления электроприводом с КЗ ротором 22
6.2. Разработка и описание системы управления электроприводом с фазным ротором. 23
6.2.1 Расчет резисторов 23
6.2.2 Выбор тормозного устройства и аппаратуры управления 25
6.2.3 Описание системы управления электроприводом с фазным ротором 26
7. Расчет энергетических показателей работы электрооборудования. 28
7.1 Расчет энергетических показателей работы электрооборудования для электропривода с КЗ ротором 28
7.2 Расчет энергетических показателей работы электрооборудования для электропривода с фазным ротором 29
8. Вопросы стандартизации и сертификации 30
8.1 Стандартизация качества электрической энергии 30
8.2 Влияние несимметрии на работу электроприемников 30
8.3 Влияние отклонения частоты на работу электроприемников 31
8.4 Влияние электромагнитных переходных процессов на работу электроприемников 32
8.5 Контроль и сертификация качества электроэнергии. 32
Заключение 34
Список литературы 35

Исходные данные:
Масса груза m = 10 т
Масса грузозахватного устройства m0 = 0.5 т
Радиус барабана R = 0.23 м
КПД механизма Ƞм = 0.92
Число скоростей Nck = 6
Скорость подъема и спуска V = 0.25 м/c
Ускорение подъема и спуска a = 0.2 м/с2
Высота подъема Н = 5 м
Время паузы t = 35 с
Ускорение свободного падения g =10 м/с2

Заключение
В процессе выполнения курсовой работы был произведен расчет и выбор электрооборудования механизма подъема мостового крана. Произведены расчеты и выбор асинхронного двигателя с фазным ротором и двигателя с короткозамкнутым ротором, которые были проверены по нагреву и перегрузочной способности, выбраны системы управления электроприводами. Рассчитаны параметры замкнутой системы управления и выполнен расчет энергетических показателей работы электрооборудования. Изучена стандартизация и техника безопасности при работе на мостовых кранах.
При расчете был выбран асинхронный двигатель с короткозамкнутым ротором АИР225М6, мощностью 37 кВт, его КПД за цикл работы составил 74%. Так же был выбран асинхронный двигатель с фазным ротором 4МТМ225М6, мощностью 37 кВт. Его КПД составил 69%
Дата добавления: 19.05.2019
РП 1375. ВК Пожарное депо на 4 автомобиля Мурманская обл. | AutoCad

Предусмотрено внутреннее пожаротушение 2 струи по 2,5 л/с в соответствии с СП 10.13130.2009 и п.6.4 СНиП 21-02-99 (Vавтостоянки - 420 м³).
Расход воды на наружное пожаротушение определен в соответствии со СНиП 2.04.02-84* и СП 8.13130.2009, и составляет 15 л/с. Пожаротушение обеспечивается от пожарного гидранта на существующей коммунальной сети водопровода.
Счетчики учета расходов холодного хозяйственно-питьевого водоснабжения (В1) ВСХ-20 с номинальным расходом воды - 2,5 м³/ч и производственно-противопожарного водоснабжения (В2) ВСХ-65 с номинальным расходом воды - 50,0 м³/ч расположены в помещении индивидуального теплового пункта - п.126 (см. чертеж лист 7).
Подача горячей воды осуществляется от двух теплообменников ИТП пластинчатого типа производства "Ридан" (Россия). Для подготовки ГВС в летнее время предусмотрен электрический емкостной вертикальный водонагреватель типа "Thermex ER300V", серии "Champion Floor", емкостью 300л. Для лучшей работы ГВС, проектом предусмотрен трубопровод циркуляции Т4. Сброс бытовых сточных вод общим расходом 7,72 м3/сут предусмотрен в сеть бытовой коммунальной канализации.

Общие данные - 2 листа
План сетей водоотведения К1 на отм. 0.000 (1 этаж)
План сетей водоотведения К1 на отм. +4.200 (2 этаж)
План кровли, схема водоотведения К2 башни
План сетей водоснабжения В1, В2, Т3, Т4 на отм. 0.000 (1 этаж)
План сетей водоснабжения В1, В2, Т3, Т4 на отм. +4.200 (2 этаж)
Принципиальная схема узла ввода водопровода в ИТП (пом. 126)
Аксонометрическая схема сети водоотведения К1
Аксонометрическая схема сетей водоснабжения В1, В2, Т3, Т4
Дата добавления: 20.05.2019
КП 1376. Курсовой проект - Проектирование винтового движителя судна | Компас

Введение 4
1 Расчет сопротивления воды движению судна .5
1.1 Выбор судна-прототипа 5
1.2 Определение площади смоченной поверхности судна 7
1.3 Расчет сопротивления воды движению судна 9
2 Расчет движителя при выборе силовой установки 13
3 Расчет движителя на полное использование мощности главных СЭУ 16
3.1 Расчет оптимального винта 16
4 Проверка дискового отношения винтов 19
4.1 Проверка на прочность 19
4.2 Проверка на кавитацию 19
5 Расчет и построение ходовых и тяговых характеристик 20
6 Расчет и построение чертежа гребного винта 23
Заключение 26
Литература 27
Приложение .28

ИСХОДНЫЕ ДАННЫЕ
1. Тип судна ГТ
2. Тип состава СТ+1
3. Грузоподъемность опр. по прототипу
4. Водоизмещение -
5. Ожидаемая скорость на глубокой воде 13,2 км/ч
6. Длина расчётная 75,0 м
7. Ширина расчётная 14,5 м
8. Осадка 1,85 м
9. Коэффициент общей полноты 0,83
10. Количество двигателей 2
11. Количество движителей 2
12. Автономность плавания 10 суток
13. Глубина фарватера 2,95 м

Технические характеристики
1. Элементы гребного винта
диаметр D 1,819 м
шаг P 1,1
шаговое отношение Р|D 0,61
дисковое отношение A/A 0,55
число лопастей z 4
частота вращения n 300 об/мин
2. Силовая установка
марка 4 ДР30/50
номинальная мощность P 294 кВт
мощность подведенная к гребному винту P 285,18 кВт
частота вращения n 300 об/мин
передаточное отношение редуктора 1
3. Тип движительного комплекса два открытых гребных винта

Целью расчета движительного комплекса является проектирование гребного винта при условии полного и наиболее эффективного использования мощности главных двигателей судна. Для выполнения расчета выдано задание на проект, в котором указано тип судна, число гребных винтов, количество двигателей, автономность плавания, главные размерения (длина, ширина, осадка), коэффициент общей полноты, скорость хода судна на глубокой воде, глубина фарватера.
Используя главные размерения, была вычислена смоченная поверхность и рассчитано сопротивление воды при различных скоростях движения судна и заданного состава. При варьировании значений частоты вращения была определен диаметр гребного винта и минимально необходимая мощность двигателя. Используя полученную графическую зависимость, по каталогу был выбран конкретный двигатель, позволяющий развить необходимую мощность на соответствующих оборотах. Дальнейший расчет сводился к определению шага и оптимального диаметра гребного винта, обеспечивающего наиболее эффективное использование мощности установленного двигателя при выбранной величине дискового отношения. Далее была произведена проверка гребного винта на удовлетворение требований по прочности и наступления кавитации. В заключении на основе поверочного расчета движительного комплекса были построены ходовые характеристики судна и выполнен чертеж винта по полученным расчетным значениям диаметра винта и шагового отношения.


В данном курсовом проекте производились расчеты по проектированию оптимального гребного винта для судна, рассчитанного на основании судно – прототипа проекта CК2000. Для данного судна был выбран двигатель марки 4 ДР 30/50 мощностью 294, кВт, и частотой вращения 5, с-1. По условию задания ожидаемая скорость судна составляла 13,2, км/ч, расчетная окончательная скорость судна составила 14.4, км/ч, что удовлетворяет условиям задания. Чертеж винта прилагается на листе формата А1.
Дата добавления: 21.05.2019
КП 1377. Курсовой проект - Трехфазный асинхронный двигатель с короткозамкнутым ротором | Компас

Содержание  2
Введение  3
1. Выбор главных размеров  5
2. Определение параметров статора 8
3. Расчет размеров зубцовой зоны статора и воздушного зазора 12
4. Расчет ротора  15
5. Расчет намагничивающего тока  19
6. Параметры рабочего режима  23
6.1. Активные сопротивления обмоток ротора и статора 23
6.2. Индуктивные сопротивления рассеяния асинхронного двигателя 26
7. Расчет потерь  30
8. Расчет рабочих характеристик 34
9. Расчет пусковых характеристик  37
10. Тепловой и вентиляционный расчет 46
11. Механический анализ 50
Заключение  54
Список литературы 55

Выбираем асинхронный трёхфазный двигатель с короткозамкнутым ротором серии 4А130М6У3, исполнение по степени защиты IP44, способ охлаждения ICO141. Мощность двигателя Pн = 11 кВт, 2р = 2, f = 50 Гц, U1н = 220/380 В, n = 3000 об/мин.

Заключение
В курсовом проекте был спроектирован асинхронный двигатель с ко роткозамкнутым ротором. Расчет выполнялся вручную и с использованием ЭВМ. В ручном расчёте были изложены и рассмотрены все разделы: электромагнитный, тепловой, вентиляционный.
В электромагнитном расчёте содержатся вопросы по расчёту параметров, энергетических и пусковых характеристик двигателя. Для статора выбрана однослойная петлевая обмотка, параллельные ветви в обмотке отсутствуют, так как, а = 1, диаметр обмоточного провода dиз = 2.34 мм и изоляция класса нагревостойкости F. Тепловой расчёт включает в себя определение превышения температуры обмотки статора над температурой окружающей среды, которая равна 60,1оС .
В вентиляционном расчёте определялся расход воздуха, обеспечиваемый наружным вентилятором, необходимого для охлаждения двигателя.
Дата добавления: 22.05.2019
КП 1378. Курсовой проект - 12 - ти этажный панельный жилой дом серии П-55 32,4 х 12,0 м в г. Белгород | AutoCad

1. Исходные данные для проектирования
2. Объемно-планировочные решения
3. Конструктивные решения
4. Расчеты
4.1. Теплотехнический расчет наружной стены
4.2. Расчет звукоизоляции
Список использованной литературы

Запроектированный жилой дом состоит из 1 торцевой секции с 12 этажами в секциях. На первом этаже располагаются торговые площади со складами и две трех-комнатные квартиры. Типовой этаж имеет следующий набор квартир: 3-2-2-3. В 2- и 3-комнатных квартирах запроектирован раздельный санузел. В каждой квартире имеется остекленная лоджия.
За относительную отметку 0,000 принята отметка верха плиты перекрытия техподполья, равная абсолютной отметке 135.000. Высота этажа здания 2.80 м, высота техподполья 2.95 м. Максимальная отметка верха здания равна 38.15 м.
На первом этаже каждой секции находится входная группа, включающая в себя тамбур с местом для размещения почтовых ящиков. При входах устраивается двойной тамбур, совмещенный с лестничной клеткой, на входе в который предусмотрена установка металлических дверей с домофоном. Входы в здание оборудованы пандусом и распашными дверями для возможности входа инвалидов на креслах-колясках. На первом этаже запроектирована мусорокамера с возможностью вывоза контейнера на тротуар. Вход в жилую секцию представлен в виде объемного железобетонного декоративного элемента, выполняющего одновременно роль козырька над крыльцом и стенки, отделяющей дверь мусорокамеры от входа в жилую секцию.

Пространственная жесткость обеспечивается совместной работой несущих стен и дисков перекрытия.
Устойчивость здания обеспечивается поперечными и продольными панелями внутренних стен, образующими с панелями перекрытия единую жесткую пространственную систему.
Ленточный сборный шириной 1400мм под внутренние стены, 1200 под наружные стены, высотой 300 мм. Глубина заложении подошвы фундамента – 3,000 мм.
Стены надземной части секций: внутренние несущие стены (высотой 2,62 м.) выполнены из сборных железобетонных панелей марки В, толщиной 180мм, 140мм (в районе ЛЛУ) из бетона кл.В30, γ=2500кг/м3 ; наружные стены трехслойные марки Н.
Перекрытия – плоские железобетонные размером на комнату (3.0, 3.3 и 4.2м) толщиной 160 мм класса В25, F50.
Технический этаж запроектирован с рулонной кровлей (Полимерная мембрана Технониколь Logicroof) по трехслойным утепленным панелям покрытия.
Перегородки – бетонные толщиной 80 мм.
Шахты лифтов – сборные самонесущие объемные элементы высотой на этаж размером 1380х2060 и 1380х1560.
Дата добавления: 22.05.2019
КП 1379. Курсовой проект - Проект цеха для производства бетонной смеси в технологии железобетонных тюбингов элеваторов мощностью 28 тыс. куб. м. в год | AutoCad

Реферат
Содержание
1. Введение
2. Характеристика заданного к производству железобетонному изделию
3. Расчет состава бетонной смеси
4. Обоснование технологической схемы
5. Подбор и компоновка технологического оборудования
6. Технологические расчеты
7. Описание технологического процесса
8. Технико-экономические показатели
Заключение
Список используемой литературы










В данном курсовом проекте запроектирован цех по производству железобетонных тюбингов элеваторов мощностью 28000 м3 в год;
-произведен расчет состава бетонной смеси;
- подобрано основное технологическое оборудование;
-обоснованно производство железобетонных тюбингов кассетным способом;
-использован консольный бетонораздатчик СМЖ-306А
- выбраны режимы тепловой обработки и виброактивации.
Виброактивация производится при помощи имеющихся на кассетной установке навесных вибраторов в пять стадий: через 30 мин., 90 мин., 120 мин., 150 мин. и 180 мин. после начала теплой ,обработки. Это позволяет эффективно бороться с трещинообразованием конструкции и повышает прочностные характеристики бетона в изделии, а также значительно повысить сцепление арматуры с бетоном.
Выводы по работе:
1. Обоснованно кассетное производство железобетонных тюбингов, позволяющее производить тюбинги элеваторов годовой мощностью 28000м3.
2. Подобранный состав бетонной смеси, позволяющий обеспечить требуемую прочность и надежность изготавливаемого изделия.
3. Для укладки бетонной смеси принят бетонораздатчик СМЖ306А.
4. Предусмотрено использование вибратора ИВ-98.
5. Определены основные технико-экономические показатели: трудоемкость, производительность труда и выработка на одного работающего.
Дата добавления: 22.05.2019
КП 1380. Курсовой проект - Завод по производству блоков из ячеистых бетонов стеновых мелких производительностью 20 млн. шт. у.е. | AutoCad

Введение
1. Номенклатура выпускаемой продукции
2. Характеристика используемого сырья
3. Технологическая часть
Выбор способа и технологической схемы производства
Режим работы цеха
Материальный баланс производства
4. Расчет основного и вспомогательного оборудования
Расчет автоклава
Выбор газобетоносмесителя
Выбор дозировочного оборудования
Расчет бункеров
Ведомость оборудования
5. Расчёт потребности в энергоресурсах
6. Технико-экономическая часть
Штатная ведомость цеха
Технико-экономические показатели работы цеха
7. Контроль технологического процесса и качества готовой продукции
8. Техника безопасности и охрана тру-да
Заключение
Список литературы


В3,5 – класс бетона по прочности на сжатие;
D600 – марка по средней плотности;
F25 – марка по морозостойкости;
1 – категория блока <3].

Блоки предназначены для кладки наружных стен зданий с относительной влажностью воздуха помещений не более 75% и при неагрессивной среде.
В помещениях с влажностью воздуха более 60% внутренняя поверхность блоков стен должна иметь пароизоляционное покрытие.

Типы и размеры стеновых блоков типа V – В3,5D600F25 – 1



В ходе выполнения курсового проекта был запроектирован завод по производству стеновых блоков из автоклавного газобетона.
Принята литьевая технология формования и резательная технология производства блоков, подобрано соответствующее оборудование.
В дополнении к основной части также были приведены требования по охране труда на предприятии, технико-экономические показатели, штатная ведомость цеха, контроль производства.
Для технологического прогресса в данной области можно применить механизацию и автоматизацию производства, а также использование современных технологий, что позволит снизить все затраты на производственные процессы, уменьшить количество рабочих и увеличить качество получаемого продукта.
На основе технико-экономических показателях можно сделать вывод, что производство блоков из автоклавного газобетона очень выгодно, т.к. затрачивается минимум электроэнергии, трудовых ресурсов и максимально используется оборудование.
Автоклавный газобетон это не только современный строительный материал, но также материал обладающий высокой экологичностью, пожаробезопасностью, высокими звукоизоляционными свойствами, а главное экономию на 20%-30% средств на отопление помещений благодаря высоким теплоизоляционным свойствам.
Дата добавления: 22.05.2019


© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.