Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


c%20

Найдено совпадений - 2600 за 0.00 сек.


РП 2536. СОС СОТ Здание научно-исследовательского института в г. Москва | AutoCad
Защumа помещенuй om пронuкновенuя осущесmвляеmся в два рубежа oxpаны:
- защumа nepuмempа помещенuя с использованием магнитоконтактных датчиков С2000-СМК и извещателей разбития стекла С2000-СТ исп.03;
- защита объема помещения с использованием датчиков объемных оптико-электронных С2000-ИК исп.03.
Все uзвещаmелu соедuняюmся шлейфамu охранной сuгналuзацuu. Шлeйфы поgключаюmся к контроллеру двyxnpoвoднoй лuнuu связи С2000-КДЛ. Все шлeйфы конmролuруюmся на oбpыв u короткое замыканuе.
Взяmuе на охрану u сняmuе с oxpaны npouзвoдumcя с пульта С2000М. Вся uнформацuя со шлейфов охранной сuгналuзацuu оmображаеmся на дucnлee пульта контроля u управленuя охранно-пожарного "С2000М", а mакже на блоке uндuкaцuu С2000-БКИ.
Расстановка оборудования СОС показана на планах расположения оборудования. Состав оборудования приведен в спецификации оборудования, изделий и материалов.
Система охранного телевидения (СОТ) предназначена для обеспечения визуального контроля за обстановкой на объекте, анализа нештатных ситуаций, проверки истинности поступающих сигналов тревоги, помощи в принятии оперативных решений и протоколирования визуальной информации.


Общие данные.
Система охранной сигнализации:
Схема структурная
План расположения оборудования и кабельных трасс Подвал
План расположения оборудования и кабельных трасс 1 этаж
План расположения оборудования и кабельных трасс 2 этаж
План расположения оборудования и кабельных трасс 3 этаж
План расположения оборудования и кабельных трасс 4 этаж
План расположения оборудования и кабельных трасс 5 этаж
План расположения оборудования и кабельных трасс 6 этаж
Схема подключения оборудования
Система охранного телевидения:
Схема структурная
План расположения оборудования и кабельных трасс 1 этаж
План расположения оборудования и кабельных трасс 2 этаж
План расположения оборудования и кабельных трасс 3 этаж
План расположения оборудования и кабельных трасс 4 этаж
План расположения оборудования и кабельных трасс 5 этаж
План расположения оборудования и кабельных трасс 6 этаж
Шкаф телекоммуникационный ТШ Фасад
Кабельный журнал
Дата добавления: 26.12.2023
КП 2537. Курсовой проект - Релейная защита и автоматика участка СЭС | Visio

ВВЕДЕНИЕ    4
1. ИСХОДНЫЕ ДАННЫЕ    6
2. ЗАЩИТА БЛОКА «ЛИНИЯ КЛ3 – ТРАНСФОРМАТОР Т4»    10
2.1. ТОКОВАЯ ОТСЕЧКА    10
2.2. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА    12
2.3 ЗАЩИТА ОТ ОДНОФАЗНЫХ КОРОТКИХ ЗАМЫКАНИЙ В СЕТИ 0,4 кВ    14
2.4. ТОКОВАЯ ЗАЩИТА ОТ ПЕРЕГРУЗКИ    14
2.5. ГАЗОВАЯ ЗАЩИТА ТРАНСФОРМАТОРА    15
2.6. ЗАЩИТА ОТ ЗАМЫКАНИЙ НА ЗЕМЛЮ В СЕТИ 6 кВ    16
3. ЗАЩИТА СЕКЦИОННОГО ВЫКЛЮЧАТЕЛЯ    18
4. ЗАЩИТА ТРАНСФОРМАТОРА Т1    22
4.1.ДИФФЕРЕНЦИАЛЬНАЯ ТОКОВАЯ ОТСЕЧКА    22
4.2. МАКСИМАЛЬНАЯ  ТОКОВАЯ  ЗАЩИТА С КОМБИНИРОВАННЫМ  ПУСКОМ  ПО НАПРЯЖЕНИЮ    24
4.3. ТОКОВАЯ ЗАЩИТА ОТ ПЕРЕГРУЗКИ    27
4.4. ГАЗОВАЯ ЗАЩИТА ТРАНСФОРМАТОРА    28
5. ЗАЩИТА ПИТАЮЩЕЙ ЛИНИИ ВЛ1    30
5.1. ТОКОВАЯ ОТСЕЧКА    30
5.2. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА    31
6. ОПЕРАТИВНЫЙ ТОК    34
ЗАКЛЮЧЕНИЕ    36
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ    38




























































































В ходе выполнения курсового проекта для каждого элемента СЭС была спроектирована защита.
Для защиты ВЛ1 используется токовая отсечка и максимальная токовая защита. Для ТО  и МТЗ используются реле РТ-40.
Для защиты трансформатора используется дифференциальная защита и максимальная токовая защита, газовая защита, защита от перегрузки. Дифференциальная защита выполнена с помощью реле РНТ-565, трансформаторы тока соединены в треугольник на ВН и в звезду на НН, максимальная токовая защита также выполнена тремя реле РТ-40. Для питания реле максимальной токовой защиты  используются два трансформатора тока. Трансформаторы тока и реле соединены по схеме неполной звезды. Токовая защита от перегрузки выполнена реле тока косвенного действия РТ40, включенным в цепь одного из трансформаторов тока. Газовая защита действует на сигнал и отключение, в случае необходимости может быть переведена только на сигнал.
Защита шин 10 кВ выполнена МТЗ на базе РТ-40. Для подключения реле используются трансформаторы тока. На выключателе Q5 предусмотрено устройство АВР, которое включает выключатель при потере питания одной из шин.
Защита блока «линия-трансформатор» выполнена с помощью ТО и МТЗ. Также присутствует газовая защита трансформатора и защита от перегрузки, действующая на сигнал.
Защиты действуют селективно. Характеристики защит нанесены на карту селективности. 
 
Дата добавления: 26.12.2023
РП 2538. ГСВ Котельная 6 МВт в Московской области | AutoCad

Проектом предусмотрен демонтаж двух водогрейных котлов "Roca" CPA 1500 полезной тепловой мощностью 1,5 Гкал/ч каждый и установленными на них газовыми горелками "Roca" TECNO 130G.
Так же демонтажу подлежит старое оборудование ГРУ, трубопроводы и существующий узел учета газа.
Взамен старых в котельной устанавливаются: два водогрейных котла "Bosch" UT-L 24 номинальной тепловой мощностью 3050 кВт каждый. На котлах устанавливаются газовые горелки "Weishaupt" WM-G30/2-A ZM, перед горелками устанавливаются мультиблоки (диапазон рабочего давления на входе в  рампу 15÷360 мбар (1,5÷36 кПа); диапазон рабочего давления на выходе из рампы перед горелкой 4÷20 мбар (0,4÷2 кПа)).
Расход газа на котел "Bosch" UT-L 24 номинальной тепловой мощностью 3050 кВт при работе в 
номинальном режиме составляет 349,5 нм³/час. Максимальное количество газа 
проходящее через оборудование ГРУ при работе двух котлов составляет 699 нм³/ч.
Границы раздела проектов ГСВ и ГСН на расстоянии 100 мм от наружной стены котельной.
На вводе газопровода в котельную устанавливается термозапорный клапан КТЗ-100, Ду100 и  
электромагнитный клапан с медленным открытием (н.з.) фирмы «MADAS» EVPS 10 0000 603, Ду100.
Проектом предусмотрена система продувочных и сбросных газопроводов. Перед газопотребляющим   
оборудованием установлена запорная арматура и продувочные газопроводы. Газовое оборудование 
защищено установленным непосредственно перед узлом учета газа фильтром фирмы «MADAS» FF 10 0000, Ду100, на фильтре устанавливается индикатор разности давлений DP/G 1.5 фирмы «MADAS», 
поставляемый в комплекте с газовым фильтром.
Для снижения давления газа до среднего предусматривается ГРУ с двумя линиями редуцирования с установкой на них регуляторов давления газа серии RG/2MB Ду50 модель RB50Z 160 со встроенным запорным механизмом (ПЗК).
Для учета расхода газа устанавливается измерительный комплекс учета газа в составе: ротационного счетчика газа RVG G160 (1:50) Ду80,электронного корректора СПГ 742 и электронного перепадомера фирмы "ОВЕН" ПД200-ДД 0,007-155-0,25-2Н с диапазоном измерения 0 - 2500 Па.
Для поагрегатного учета газа в котельной устанавливается турбинный счетчик газа TRZ G250 (1:30) Ду 80 для каждого котла "Bosch" UT-L 24.


Общие данные.
Основные характеристики оборудования
Схема газопроводов
План на отм. 0.000.
Разрез 1-1
Разрезы 2-2 и А-А
Разрезы 3-3 и А-А (Расположение внешних импульсов).
Разрез 4-4
Дата добавления: 26.12.2023
ДП 2539. Дипломный проект - Одноэтажное складское здание с зонами двухуровневых офисных встроек 396 х 125 м в Московской области | AutoCad, PDF

– архитектурная и планировочная характеристика исходных данных о районе строительства, планирование существующего ландшафта, объемные решения складских зданий, конструктивная особенность;
– в строительной технологии определяются объемы ресурсов материально-технического обеспечения, необходимых для осуществления технологического процесса по строительству и монтажу складских колонн, разработаны необходимые документы; 
– расчетно-конструктивный с выполненным с использованием программного комплекса расчетом стропильной фермы ФC1;
– в организации строительства рассчитываются объемы складских зданий для составления графика производства работ с рабочими кадрами, выполнен генеральный план строительства;
–  защита объекта технической охраны, в котором реализуются организационные и технологические мероприятия по пожарной безопасности и охране окружающей среды;
–определение общей сметной стоимости строительства склада, используя укрупненные показатели стоимости строительных работ.


Введение 7
1. Архитектурно – планировочный раздел 8
1.1 Планировочная организация земельного участка 8
1.2 Объемно-планировочное решение 11
1.3 Конструктивное решение 12
1.4 Теплотехнический расчет стены 14
1.5 Теплотехнический расчет покрытия 17
1.6 Архитектурно-художественное решение 19
1.7 Санитарно-техническое и инженерное оборудование 20
2 Расчетно-конструктивный раздел. 21
2.1 Описание конструкций 21
2.3 Статический расчет фермы 25
2.4 Подбор и проверка сечений фермы 26
2.5 Расчет узлов ферм 27
3 Технология строительства 29
3.1 Требования законченности работ 29
3.2 Расчет объемов работ и расхода строительных материалов 29
3.2.1 Расчет и подбор крана 29
3.2.2 Подготовка конструкций к монтажу 31
3.2.3 Технология производства работ 32
3.3 Требования к качеству работ 35
3.4 Безопасность труда, пожарная и экологическая безопасность 37
3.5 Потребность в материально-технических ресурсах 39
3.6 Технико-экономические показатели 39
4 Организация и планирование строительства 41
4.1 Краткая характеристика объекта 41
4.2 Определение объемов работ 41
4.3 Определение потребности в строительных конструкциях 42
4.4 Подбор машин и механизмов 42
4.5 Определение трудоемкости и машиноемкости работ 45
4.6 Разработка календарного плана производства работ 46
4.7 Расчет потребности в складах и временных зданиях 47
4.8 Проектирование строительного генерального плана 53
4.9 Мероприятия по охране труда и технике безопасности 54
4.10 Технико-экономические показатели 56
5 Экономика строительства 57
5.1 Пояснительная записка 57
5.2 Сводный сметный расчет 58
5.3 Объектная смета на общестроительные работы 58
5.4 Объектные сметы на инженерные системы и оборудования 59
5.5 Объектная смета на благоустройство и озеленение 59
5.6 Расчет стоимости проектных работ 59
6. Безопасность и экологичность объекта 61
6.1 Конструктивно-технологическая и организационно-техническая характеристика рассматриваемого технического объекта 61
6.2 Идентификация профессиональных рисков 61
6.3 Методы и средства снижения профессиональных рисков 62
6.4 Обеспечение пожарной безопасности технического объекта 63
6.5 Обеспечение экологической безопасности технического объекта 65
6.5.1 Анализ негативных экологических факторов 65
6.5.2 Разработка мероприятий по снижению негативного антропогенного воздействия на окружающую среду рассматриваемым техническим объектом 67
Заключение 69
Список используемой литературы и используемых источников 70
Приложение А 76
Приложение Б 83
Приложение В 95
Приложение Г 106
Приложение Д 130
Приложение Е 133


1. Cхема планировочной организации земельного участка 1:1000
2. Фасады ( 1:100)
3. План 1-го этажа ( 1:500)
4. Разрез 1-1 ( М 1:200), разрез 2-2 ( М 1:200)
5. Схема расположения фундаментов ( 1:500)
6. План кровли ( 1:500); узлы (1:10)
7. Ферма ФС -1
8. Технологическая карта на монтаж железобетонных колонн
9. Календарный план производства работ
10. Стройгенплан


Складской комплекс состоит из четырех основных зданий – складских корпусов «А», «В», «С», «Д». На территории участка находятся также здания и сооружения служб технического и вспомогательного обеспечения. Складской корпус «Д», рассматриваемый в данной бакалаврской работе, предназначен для приема, хранения, комплектации, упаковки и отправки товаров бытовой техники и электроники, косметических товаров, сухих продуктов питания, аэрозолей и др. 
Исходя из того, что складской корпус будет сдаваться в аренду разным предприятиям, предусматривается разделение здания на самостоятельные блоки, соответствующие разделению на противопожарные отсеки.  Складской корпус «Д» запроектирован одноэтажным, с зонами двухуровневых встроек, разделенный на 3 пожарных отсека. Каждый отсек здания имеет две разгрузочные зоны, оборудованные подъемно-секционными воротами с герметизаторами и доклевеллерами, а также въездные ворота. Помимо помещений складского назначения для стеллажного хранения товаров в отсеках предусмотрены помещения административно-бытовые, санитарно-технические, помещения приёма пищи, помещения для размещения охраны корпуса, инженерно-технические и вспомогательные помещения. Относительная отметку 0.000 м - абсолютная отметка 206,10 м. В плане корпус запроектирован прямоугольным, с максимальными осевыми габаритами 125 × 396 м. 
Отметка верха ограждения парапета составляет плюс 15,985 м. В отсеках Д2-Д3 вдоль оси Е на отметке +6,140 м расположена складская антресоль шириной 9м. 
Осуществление вертикальной связи между этажами предусмотрено посредством открытых лестниц, имеющих выход непосредственно наружу на прилегающую к зданию территорию. Инженерно-технические помещения (насосная пожаротушения, ГРЩ, ВРУ, теплогенераторные) расположены у наружных стен и обеспечены самостоятельными входами.
Помещения зарядных аккумуляторных батарей погрузочно-разгрузочной техники расположены у наружных стен складского корпуса и имеют самостоятельные выходы непосредственно наружу.  
Офисные встройки располагаются по углам пожарных отсеков. Каждая встройка имеет собственные технические помещения – электрощитовую, серверную, венткамеру, индивидуальную газовую теплогенераторную. 
Все встройки являются двухуровневыми. Во встройках, расположенных по оси Е, на втором этаже находится офис, с количеством сотрудников не более 15 чел. Во встройках, расположенных по оси А, на втором этаже находится открытая эксплуатируемая площадка. 


Колонны сборные железобетонные сечением 600×600 мм и 600×400 мм, изготавливаются из бетона класса В35 W4 F75. Армирование сборных железобетонных изделий принято из арматуры класса А500C и А240. Конструкция пола показана на листе 4. Перекрытие над офисными помещениями выполняется из сборных железобетонных плит, опирающихся на сборные железобетонные ригели и сборные железобетонные колонны. Плиты перекрытия ‒ сборные железобетонные многопустотные высотой 220 мм из бетона марки В35. Ригели ‒ сборные железобетонные с предварительно напряженной арматурой высотой 450мм и 600мм из бетона марки B40. Фермы металлические, пролетом 25 метров, верхний пояс выполнен из прямоугольной трубы 140×120×5 мм, нижний пояс ‒ из квадратной трубы 120×5 мм. Стены из сэндвич-панелей. Покрытие представляет собой стропильные фермы, установленные с шагом 40,0 м на фермы 12 метров. Опирание стропильные фермы является шарнирным <1].
По верху стропильных ферм укладывается профилированный стальной настил Н75-750-0,9, выполняющий роль горизонтальных связей по покрытию. На профилированный настил через 1 слой пароизоляции (пленка полиэтиленовая) укладывается минераловатный утеплитель Roof Batts Optima толщиной 130 мм, поверх которого стелется полимерная мембрана Logicroof, толщиной 1,2 мм. 
На основе неизменности покрытия горизонтального плоскости принято сплошное крепление диска, образованного профилированными настилами, закрепленными на верхней части фермы. Настил соединяет верхний пояс фермы из плоскости всю длину и принимает все вертикальные силы, которые передаются на поверхность.
Общая устойчивость и жесткость здания обеспечивается совместной работой горизонтального диска покрытия и жесткого защемления колонн в фундаменте. 


В этом выпускном квалификационном проекте разработаны проекты одноэтажного склада с зонами 2-х уровней офисных помещений. Цели, задачи, которые были поставлены перед выполнением работ, достигнуты в полной мере.
В разделе «Технология строительства» разрабатывается технологическая карта монтажа сборной железобетонной колонны. Подробные рекомендации по изготовлению работ, описания основных методов и последовательности изготовления работ. Подобраны ресурсы материально-технического назначения, определены основные технико-экономические параметры.
Разработан раздел архитектуры и планировки с учетом требований, предъявляемых к функциональным назначениям складских корпусов. Рассчитано техническое и экономическое значения и соответственно подобраны необходимые материалы для требуемой конструкции.
В таком разделе, как «Экономика строительства» рассчитана общая сметная цена строительства объекта. А также выполнен сводный сметный расчет, объектной сметы для монтажно-строительной работы, устройства инженерных систем, благоустройства.
В разделе организации и планирования строительства разрабатывается проект изготовления работ, в котором выбираются основные механизмы и машины. Также разработаны календарные планы работы, строительные генеральные планы, в которых проектируются временные объекты и конструкции, склады.
 
Дата добавления: 26.12.2023
КП 2540. Курсовой проект - Блок складов. Таможенный терминал 72,3 х 48,0 м в г. Казань | AutoCad

ВВЕДЕНИЕ.    6
1.Исходные данные для строительства.    7
2. Схема планировочной организации земельного участка.    7
3.Технико-экономические показатели    8
4. Архитектурно-конструктивное решение промышленного здания    8
5. Объёмно-планировочное решение производственного здания    10
6.Теплотехнический расчет    11
7.Расчет КЕО    17
8.Расчет АБК    24
Приложение 1    26
Приложение 2.    27
БИБЛИОГРАФИЧЕСКИЙ СПИСОК    31







Фундаменты- столбовые железобетонные под колонну.
Колонны- железобетонные, одноветвеевые и двухветвевые.
В пролёте (в осях А-В) шириной L=24 м, Н=8,4 м колонны для бескрановых зданий постоянного сечения по высоте спроектированы: крайние из железобетона ККЖ-1 (Серия 1.423-3 марка К84-1), а средние из железобетона КСЖ-1 (Серия 1.423-3 марка К84-47)
В пролётах (в осях А-В) шириной L=24 м, Н=10,8 м колонны для зданий с мостовыми кранами спроектированы: крайние из железобетона ККЖ-2 (Серии КЭ-01-49 марки КП1-10), а средние из железобетона КСЖ-2 (Серии КЭ-01-49  марки КП1-30).
Стойки торцевого фахверка из сварных швеллеров №20; фахверковая колонна из сварных двутавров, воспринимают ветровую нагрузку и массу панельных стен. 
Несущие конструкции покрытия - Железобетонные стропильные фермы пролетом 24м (ФС 24) 
Ограждающие конструкции покрытия – ребристые плиты. 
Кровля- малоуклонная с гидроизоляцией из полимерной мембраны. В качестве утеплителя использованы плиты из минеральной ваты толщиной 160 мм согласно теплотехническому расчету.
Наружние стены- трехлойная ж/б панель с утеплителем из пенополистирола толщиной 100 мм согласно теплотехническому расчету. Наружние слои панелей выполнены из железобетона (Серия 1.432-5)
Трёхслойная ж/б панель имеет ширину 220мм, длину 6000 мм. Панели подвешивают к каркасу гибкими крепежными элементами.
Фонари- зенитные фонари длиной 24 м и шириной 12 м. для пролётов в осях А-В.
Водосток с покрытия здания предусмотрен внутренним. Водосточные воронки располагаются в ендовах кровли с шагом 24 м, от торцов здания воронки расположены на расстоянии 6м. К модульным координационным осям имеют привязку 450 мм и 600 мм.
Дата добавления: 03.01.2024
КП 2541. Курсовой проект - ТК на возведение монолитных железобетонных конструкций типового этажа 9-ти этажного жилого дома 30,4 х 18,6 м в г. Саратов | AutoCad

1. Область применения    2
2. Технология и организация выполнения работ.    3
3. Требования к качеству и приёмке работ    23
4. Потребность в материальных и технических ресурсах    29
5. Калькуляция затрат труда и машинного времени    31
6.График производства работ    40
7. Охрана труда и требования к безопасности    46
8. Технико-экономические показатели    48
Библиографический список    50


Строительство ведётся в г. Саратов, климатический район III, подрайон A, зона 2, расчётная температура наружного воздуха t = 27°C (СП 131.13330.2020 Строительная климатология).
Работы производятся в три смены, общее время на осуществление комплекса работ составляет 10 дней.
В составе работ, рассмотренных технологической картой, учтены: арматурные; опалубочные; бетонные, в том числе вспомогательные — подача материалов и уход за бетоном.
Для производства работ используется башенный кран Potain MCR 160, стационарный бетононасос Putzmeister BSA 1005 D3B в комплекте с бетонораздаточной стрелой Putzmeister MXR32-4.
В конструкциях применяется бетон класса В22,5, в качестве рабочей арматуры используется А400, конструкционной — А240.
 
Дата добавления: 31.12.2023
КП 2542. Курсовой проект - Расчет насадочной абсорбционной колонны и холодильника абсорбента на прочность NH3 | Компас

1 Введение 
2 Литературный обзор 
3 Сравнительная характеристика и выбор основного оборудования 
3.1 Выбор конструкции аппарата 
4  Описание технологической схемы установки 
5 Основные свойства рабочих сред 
6 Выбор конструкционного материала 
7 Технологический расчет абсорбера 
7.1 Материальный баланс 
7.2 Движущая сила массопередачи 
7.3 Определение скорости газа и диаметра абсорбера с насадкой кольца Рашига 
7.4 Плотность орошения колонны… 
7.5 Определение коэффициента массопередачи для абсорбера с насадкой кольца Рашига 
7.6 Поверхность массопередачи и высота абсорбера с насадкой кольца Рашига 
7.7 Гидравлическое сопротивление абсорбера с насадкой кольца Рашига 
8 Конструктивный расчет аппарата 
8.1 Выбор основных конструкционных материалов 
8.2 Определение расчетных параметров 
8.2.1. Расчетная температура 
8.2.2. Допускаемые напряжения 
8.2.3. Рабочее, расчетное и пробное давления 
8.2.4. Коэффициент прочности продольных швов 
8.2.5. Прибавки к расчетной толщине стенки 
8.3 Расчет толщины цилиндрической обечайки 
8.3.1. Расчет в рабочих условиях 
8.3.2.Расчёт в условиях испытаний (Гидроиспытания) 
8.4 Расчет эллиптического днища 
8.4.1. Расчет в рабочих условиях 
8.4.2. Расчёт в условиях испытаний (Гидроиспытания) 
8.5 Определение трубопроводов и диаметров штуцеров для ввода и вывода теплоносителей 
8.5.1. Вход и выход газовой смеси 
8.5.2. Вход и выход воды 
8.5.3. Расчет люка, штуцеров «а» и «б» 
8.6 Выбор фланцев для обечайки, люка и штуцеров аппарата 
8.7 Подбор газодувной машины 
8.8 Подбор насоса для подачи воды 
8.9 Расчет укрепления отверстий 
8.9.1. Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища аппарата 
8.9.2. Расчетная толщина эллиптического днища в месте расположения штуцера 
8.9.3. Расчетный диаметр одиночного отверстия в обечайке, не требующего укрепления, при наличии избыточной толщины стенки сосуда 
8.9.4. Проверка необходимости укрепления отверстий обечайки 
8.9.5. Расчет укрепления одиночного отверстия в обечайке (dу=500мм) 
8.10 Выбор опор 
8.11 Выбор строповых устройств 
9 Расчет холодильника абсорбента
10 Гидравлический расчет 
11 Заключение 
12 Список литературы 


Выполнить подробный расчет абсорбционной колонны и теплообменника, указанного в таблице исходных данных.
Представить технологическую схему абсорбционной установки и выполнить чертеж колонны. 




1.Колонна абсорбционная предназначена для очистки воздуха от аммиака водой. Сейсмичность районов, в которых возможна установка колонны должна быть не более 6 баллов по шкале MSK-64.
2.Рабочая среда:
-наименование - аммиачно-воздушная смесь
-состояние - газ
-плотность, кг/м - 0,00002
-класс опасности по ГОСТ 12.1.007 - 4
-воспламеняемость - да
- категория и группа взрывоопасности смеси - IIАТ T1
- Рабочее давление, изб., МПа - 0,3
- Расчетное давление, МПа - 0,32
- Пробное гидравлическое давление, МПа - 0,62
- Температура рабочая,  С - 65
- Температура расчетная,  С - 65
- Температура абсорбции,  С - 20
3.Окружающая среда:
- место установки - наружное, на открытой площадке
4.Скорость коррозии, не более, мм/год - 0,1
5.Срок службы, лет - 20
6.Объем расчетный, м - 56
7.Группа аппарата по ГОСТ Р 52630-2012 - 1


1.На основании литературного обзора была выбрана абсорбционная колонна насадочного типа, т.к. такие аппараты по сравнению с другими типами абсорберов менее громоздки, имеют простую конструкцию, могут использоваться при работе с агрессивными средами, имеют низкое гидравлическое сопротивление.
2.В результате технологического расчета основного аппарата были получены следующие значения:
- диаметр абсорбера – 6,6 м;
- высота слоя насадки 39,5 м; 
- высота колонны – 41,6 м;
- поверхность массопередачи в абсорбере – 841 м2;
- гидравлическое сопротивление орошаемой насадки – 37,1 кПа
3.Был проведен расчет вспомогательного оборудования: кожухотрубчатого холодильника абсорбента с трубами длинной L=3 м и номинальной поверхностью F=221 м2, диаметром кожуха D=1,0 м, dтр=20х2 мм, n=1173 шт, z=1.
Соотношение n/z=1173.
Таким образом, поставленная в курсовом проекте цель выполнена.
 
Дата добавления: 10.01.2024
КП 2543. Курсовой проект - Расчет однокорпусной выпарной колонны NaCl | Компас

Задание на проектирование    2
Введение    6
1 Литературный обзор    7
1.1 Теоретические основы процесса выпаривания    7
1.2 Основные технологические схемы    9
1.3 Конструкции выпарных аппаратов    14
1.3.1 Выпарные аппараты с естественной циркуляцией    14
1.3.2 Выпарные аппараты с принудительной циркуляцией    16
1.3.3 Пленочные выпарные аппараты    17
2 Описание технологической схемы    20
3 Основные свойства рабочих сред    21
4 Выбор конструкции аппарата    23
5 Технологические расчеты    24
5.1 Расчет материального баланса выпарной установки    24
5.2 Расчет температурных депрессий    25
5.2.1 Температурные потери от гидравлических сопротивлений    25
5.2.2 Температурные потери от концентрационной (температурной) депрессии    26
5.2.3 Температурные потери от гидростатического эффекта    27
5.3 Определение температуры кипения раствора    29
5.4 Расчет теплового баланса выпарной установки    30
5.5 Тепловой расчет греющей камеры    32
5.6 Определение толщины тепловой изоляции    37
6 Конструктивный расчет аппарата    39
6.1 Выбор основных конструкционных материалов    39
6.2 Определение числа кипятильных трубок    39
6.3 Определение основных конструктивных параметров корпуса    40
6.4 Определение расчетных параметров    42
6.4.1 Расчетная температура    42
6.4.2 Допускаемые напряжения    42
6.4.3 Рабочее, расчетное и пробное давления    42
6.4.4 Коэффициент прочности продольных швов    43
6.4.5 Прибавки к расчетной толщине стенки    44
6.5 Расчет толщины цилиндрической обечайки    44
6.5.1 Расчет в рабочих условиях    44
6.5.2 Расчёт в условиях испытаний (Гидроиспытания)    45
6.6 Расчет эллиптического днища греющей камеры    46
6.6.1 Расчет в рабочих условиях    46
6.6.2 Расчёт в условиях испытаний (Гидроиспытания)    46
6.7 Определение трубопроводов и диаметров штуцеров    47
6.7.1 Расчет толщины стенки штуцеров «а» и «б»    48
6.8 Выбор фланцев для обечайки, люка и штуцеров аппарата    49
6.9 Расчет укрепления отверстий    50
6.9.1 Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища сепаратора    50
6.9.2 Расчетная толщина эллиптического днища в месте расположения штуцера    50
6.9.3 Расчет диаметра одиночного отверстия, не требующего укрепления для эллиптического днища греющей камеры    51
6.9.4 Расчетная толщина эллиптического днища в месте расположения штуцера    51
6.9.5 Расчетный диаметр одиночного отверстия в обечайке, не требующего укрепления, при наличии избыточной толщины стенки сосуда    51
6.9.6 Проверка необходимости укрепления отверстий обечайки    52
6.9.7 Расчет укрепления одиночного отверстия в обечайке 
(dу=600мм)    52
6.10 Выбор опор    55
6.11 Выбор строповых устройств    56
7 Расчет и выбор теплообменника    57
7.1 Тепловой расчет теплообменника    57
7.2 Гидравлический расчет теплообменника    64
8 Расчет вспомогательного оборудования    68
8.1 Расчет и выбор барометрического конденсатора    68
8.2 Расчет и выбор вакуум-насоса    71
Заключение    74
Список использованной литературы    75


Выполнить проект однокорпусной выпарной установки для концентрирования водного раствора NaCl. Производительность по исходному раствору   = 5,0 кг/с. Раствор упаривается от концентрации   = 10 % (масс.) до   = 25 % (масс.). Давление греющего пара   = 0,2 МПа, давление в барометрическом конденсаторе  =0,03 МПа. Исходный раствор перед подачей в выпарной аппарат подогревается греющим паром в кожухотрубчатом теплообменнике от температуры   = 30°С до температуры кипения. Упаренный раствор охлаждается в кожухотрубчатом холодильнике до температуры t = 25°С. Температуру охлаждающей воды принять в интервале 10…20 оС.
Сделать подробный расчет греющей камеры выпарного аппарата и холодильника упаренного раствора. Выполнить расчет барометрического конденсатора.


В данном курсовом проекте произведен расчет и спроектирована однокорпусная вакуум-выпарная установка для концентрирования водного раствора NaCl производительностью 5,0 кг/с. В проекте представлены теоретические основы и области применения процесса выпаривания, описание конструкции вакуум-выпарной установки, приведена принципиальная технологическая схема вакуум-выпарной установки. В курсовом проекте произведены расчеты:
- материального баланса выпарной установки;
- температурных депрессий;
- температуры кипения раствора;
- теплового баланса выпарной установки;
- греющей камеры.
Также были произведены расчеты вспомогательного оборудования: холодильника упаренного раствора, барометрического конденсатора и вакуум-насоса.

 
Дата добавления: 10.01.2024
ДП 2544. Дипломный проект - Энергообеспечение производственной базы Приволжскнефтепровод на 75 тракторов с реконструкцией систем отопления и вентиляции | Компас

- выбора системы отопления в мастерской на 75 тракторов;
- выбор и компоновка инфракрасных обогревателей PANRAD;
- разработка схемы подачи газообразного топлива к инфракрасным обогревателям PANRAD;
- электроснабжение технологического процесса;
- разработке мероприятий по безопасности жизнедеятельности и энергосбережению.
- разработка мероприятий по энергосбережению.
В детальной части дипломного проекта разработана схема подключения и место установки инфракрасных обогревателей PANRAD. И роизведен выбор высоты установки
Дана технико-экономическая оценка дипломного проекта, по результатам которой интегральный срок окупаемости инженерных решений составляет 3,12 года и капиталовложениях 108.99 тыс. руб.

СОДЕРЖАНИЕ
СОДЕРЖАНИЕ 5
ВВЕДЕНИЕ 8
1 КРАТКАЯ ХАРАКТЕРИСТИКА ХОЯЙСТВА И ОБЪЕКТА ПРОЕКТИРОВАНИЯ 9
1.1 ХАРАКТЕРИСТИКА ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ 9
1.2 ХАРАКТЕРИСТИКА ОБЪЕКТА 11
2 ОПРЕДЕЛЕНИЕ ПОТРЕБЛЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ 12
2.1 РАСЧЕТ ВОЗДУШНОГО ОТОПЛЕНИЯ МАСТЕРСКОЙ 12
2.2 РАСЧЕТ ПОТЕРЬ ТЕПЛА В МАСТЕРСКОЙ 15
2.3 РАСЧЕТ ВЕНТИЛЯТОРОВ 20
2.4 ВЫБОР ВЕНТИЛЯТОРОВ И ЭЛЕКТРОДВИГАТЕЛЕЙ К НИМ 22
2.5 РАСЧЕТ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ 24
2.6 ВЫВОДЫ ПО РАЗДЕЛУ 27
3 РЕКОНСТРУКЦИЯ СИСТЕМЫ ОТОПЛЕНИЯ 28
3.1 ОПРЕДЕЛЕНИЕ ПЛОЩАДИ ПОВЕРХНОСТИ ТЕПЛООТДАЧИ НАГРЕВАТЕЛЬНЫХ РЕГИСТРОВ 28
3.2 ОПИСАНИЕ КОНСТРУКЦИИ ИНФРАКРАСНОГО ИЗЛУЧАТЕЛЯ 29
3.3 ВЫБОР ЛУЧИСТОГО ИНФРАКРАСНОГО УСТРОЙСТВА ДЛЯ РЕМОНТНОГО ЦЕХА 32
3.4 ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГАЗОВОГО ЛУЧИСТОГО ОБОГРЕВАТЕЛЯ PANRAD МОДЕЛИ АА35 И АА50 33
3.5 ПРИНЦИП РАБОТЫ ТРУБНОГО ГАЗОГОРЕЛОЧНОГО ОБОГРЕВАТЕЛЯ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ PANRAD35
3.6 ВВОД В ЭКСПЛУАТАЦИЮ 36
3.7 ВЫВОДЫ ПО РАЗДЕЛУ 38
4 ЭЛЕКТРОСНАБЖЕНИЕ 39
4.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА 39
4.2 ВЫБОР АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ 40
4.3 ВЫБОР УСТРОЙСТВА ЗАЩИТНОГО ОТКЛЮЧЕНИЯ 42
4.4 ВЫБОР КОММУТАЦИОННОЙ АППАРАТУРЫ 42
4.5 ВЫВОДЫ ПО РАЗДЕЛУ 42
5 АВТОМАТИЗАЦИЯ 44
6 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ЭФФЕКТИВНОСТИ ПРОЕКТНЫХ РЕШЕНИЙ 46
6.1 РАСЧЁТ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ВОДЯНОГО ОТОПЛЕНИЯ 47
6.2 РАСЧЁТ ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ЛУЧИСТОГО ОТОПЛЕНИЯ. 49
6.3 Наименование показателей 56
6.4 ВЫВОДЫ ПО РАЗДЕЛУ 58
7 БЕЗОПАСНОСТЬ ЖИЗНИДЕЯТЕЛЬНОСТИ НА ПРОИЗВОДСТВЕ 59
7.1 КРАТКАЯ ХАРАКТЕРИСТИКА ПОКАЗАТЕЛЕЙ АНАЛИЗА БЖД НА ОБЪЕКТЕ 59
7.2 АНАЛИЗ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ НА ОБЪЕКТЕ 60
7.2.1 КЛАССИФИКАЦИЯ УСЛОВИЙ ТРУДА 60
7.2.2 УТОЧНЕНИЕ ЗАДАЧ ПРОЕКТИРОВАНИЯ 61
7.3 РАЗРАБОТКА СИСТЕМ ЭЛЕКТРОБЕЗОПАСНОСТИ 62
7.4 СИСТЕМА СПОСОБОВ И СРЕДСТВ ЭЛЕКТРОБЕЗОПАСНОСТИ 62
7.5 Выбор индивидуальных средств защиты 63
7.5.1 РАСЧЕТ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ 64
7.5.2 РАСЧЕТ ИСКУССТВЕННОГО ОСВЕЩЕНИЯ 67
7.5.3 ВЫБОР УСТРОЙСТВ ЗАЩИТНОГО ОТКЛЮЧЕНИЯ 68
7.6 МОЛНИЕЗАЩИТА 68
7.7 ВЫБОР СРЕДСТВ ПОЖАРНОЙ БЕЗОПАСНОСТИ. 70
7.8 ПРОИЗВОДСТВЕННАЯ САНИТАРИЯ. 70
7.9 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ. 71
7.10 ЗАКЛЮЧЕНИЕ. 71
8 МЕРОПРИЯТИЯ ПО ЭНЕРГОСБЕРЕЖЕНИЮ 72
8.1 ЭНЕРГОСБЕРЕЖЕНИЕ НА ОБЪЕКТЕ ПРОЕКТИРОВАНИЯ 72
8.2 МЕРОПРИЯТИЯ ПО ЭНЕРГОСБЕРЕЖЕНИЮ В ТЕПЛОСНАБЖЕНИИ 73
8.3 ЭНЕРГОСБЕРЕЖЕНИЕ В ЭЛЕКТРОСНАБЖЕНИИ 74
8.4 ВЫВОДЫ ПО РАЗДЕЛУ 75
ЗАКЛЮЧЕНИЕ 76
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 77


1 Генеральный план производственной базы; 
2.Ремонтная мастерская на 75 тракторов; 
3.Системы отопления и вентиляции мастерской на 75 тракторов; 
4.План расположения и подключения инфракрасных обогревателей к газовой сети; 
5.Схема газовой горелки; 
6. Обогрев излучателем PANRAD. Межосевое расстояние.; 
7.Электрическая схема подключения излучателей PANRAD; 
8 Технико-экономическое обоснование эффективности проектных решений.

Объектом проектирования является мастерская на 75 тракторов ОАО «ПРИВОЛЖСКНЕФТЕПРОВОД», в которой проектируется отопления и вентиляции производственных помещений
Актуальность данного вопроса обусловлено тем, что при существующей системе отопления и вентиляции обеспечивается требуемое нормативными документами внутренняя температура помещений. Использование современных инфракрасных отопительных приборов PANRAD позволит снизить теплопотери в окружающую среду за счет снижения внутренней температуры воздуха и боле высокого КПД установок.В этой связи именно энергосбережение является ключевым способом повышения рентабельности.
В ходе расчета проектирования необходимо определить тепловую нагрузку мастерской на 75 тракторов, рассчитать тепловые сети, произвести выбор параметров теплоносителя, составить тепловую схему пункта, произвести компоновку пункта учета и регулировки, определить электрическую нагрузку и рассчитать внутренние тепловые сети гаража. Для управления оборудованием инфракрасного обогревателя предусмотреть систему автоматизации и контроля параметров воздуха и наличия пламени в горелочном устройстве. Разработать систему средств обеспечения безопасности. По результатам проектирования произвести расчет технико–эконмических показателей работы инфракрасных обогревателей. Проектирование систем отопления с использованием инфракрасных обогревателей позволяет уменьшить теплопотери в здание и уменьшить потребление газа за счет более высокого коэффициента полезного действия по сравнению с традиционными системами отопления. Таким образом, применение инфракрасных обогревателей имеет ряд преимуществ в области энергосбережения, что особенно актуально после введения 248 закона «Об энергоэффективности и энергосбережению».





В результате разработки дипломного проекта были решены такие задачи, как:
- расчёт тепловых нагрузок на отопление и вентиляцию, горячее водоснабжение, технологические нужды;
- расчёт и проектирование систем холодного водоснабжения и газоснабжения;
- расчёт электроснабжения, выбор марки и сечения проводов.
В результате углубленных расчётов отопления производственно-административного корпуса были исчислены потери теплоты через наружные ограждения, рассчитан тепловой поток на отопление цеха и поддержание в нём необходимой температуры. Произведена реконструкция системы отопления, в результате которой были заменены нагревательные приборы.
Была рассчитана силовая проводка внутри помещения. Были выбраны сечения проводов электрической проводки. Для предприятия были выбраны трансформаторные подстанции и рассчитаны их необходимые мощности.
В экономической части дипломного проекта проводится обоснование необходимости принятых в ходе выполнения проекта решений.
Дата добавления: 16.01.2024
РП 2545. ЭС Аварийное электроснабжение БССС с установкой дизельной электростанции | AutoCad

В ДЭС предусматривается автоматический заряд аккумуляторной батареи, предпусковой прогрев двигателя, автоматическое регулирование частоты и напряжения ДЭС.
Проектом предусматривается установка АВР ДГУ в помещении электрощитовой.
Алгоритм включения проектируемого ДГУ следующий:
При пропадании сети от основного источника питания подается сигнал на пуск проектируемого ДГУ 2. В случае отказа или останова ДГУ2, включается ДГУ 1. При появлении сети резервное электроснабжение отключается. Производится питание по нормальной схеме.
Сечение кабеля выбираем из расчета мощности дизель-генераторной установки. Мощность ДГУ составляет 310 кВА. Максимально допустимый ток рассчитывается по формуле I=P/√3*U*cosφ, cosφ принимаем равным 0,92. Отсюда I=420 A. 


Общие данные
План размещения ДГУ
Схема принципиальная однолинейная электроснабжения
Блок автоматики GE 804. Схема принципиальная
Схема цепей сигналов ALARM
План заземления ДГУ
План прокладки кабельных линий
Кабельный журнал



Дата добавления: 13.01.2024
РП 2546. ЭС Аварийное электроснабжение BSC с установкой дизельной электростанции | AutoCad

В контейнере ДЭС предусматривается автоматический заряд аккумуляторной батареи, предпусковой прогрев двигателя, автоматическое регулирование частоты и напряжения ДЭС.
Проектом предусматривается установка АВР в контейнере BSC.
Проектом предусмотрена передача основных сигналов (ALARM) на кросс BSC, для дальнейшей их ретрансляции в диспетчерскую службу ПАО "М".
Запуск ДГУ предусматривается при пропадании двух вводов на любом из АВР BSC.
Сечение кабеля выбираем из расчета мощности дизель-генераторной установки. Мощность ДГУ составляет 60 кВА (48 кВт). Максимально допустимый ток рассчитывается по формуле I=P/√3*U*cosφ, cosφ принимаем равным 0,9. Отсюда I=48000/√3*380*0,9=81 A. 


Общие данные
План размещения ДГУ
Схема принципиальная однолинейная электроснабжения
Блок автоматики DSE 7320. Схема принципиальная
Схема подключения контрольных цепей
Схема электрическая принципиальная щита АВР СН ДГУ
Схема цепей сигналов ALARM 
План заземления контейнера ДГУ
План прокладки кабельных линий
Кабельный журнал
Дата добавления: 13.01.2024
КП 2547. Курсовой проект - ОиФ 9-ти этажного гражданского здания 35,6 х 12,0 м в г. Пермь | AutoCad

Введение    8
1. Определение физико-механических характеристик грунтов строительной площадки    9
2. Сбор нагрузок на фундамент    14
3. Определение глубины заложения фундамента    16
4. Расчет свайного фундамента под стену здания.    18
4.1 Определение расчетной нагрузки, передающийся на свайный фундамент под стену.18
4.2 Определение среднего вертикального давления p под подошвой условного фундамента и проверка выполнения условия p≤R.    23
4.3. Расчет конечной (стабилизационной осадки ленточного свайного фундамента)    27
5. Расчет свайного фундамента под колонну здания    27
5.1 Определение расчетной нагрузки, передающийся на свайный фундамент под колонны (Ось Б).    27
5.2 Определение среднего вертикального давления p под подошвой условного фундамента и проверка выполнения условия p≤R.    31
5.3. Расчет конечной (стабилизационной осадки столбчатого свайного фундамента)    35
6. Проектирование свайного фундамента (технология «сваи-РИТ»)    38
6.1. Выбор конструкции свайного фундамента    38
6.2. Несущая способность сваи по материалу для сваи по оси А    38
6.3. Определение несущей способности одиночной сваи по грунту Fd и расчетной нагрузки Pcb на одну сваю по оси А    39
6.4. Определение среднего вертикального давления p под подошвой условного фундамента и проверка выполнения условия p≤R.    44
6.5 Расчет конечной (стабилизационной осадки ленточного свайного фундамента)    48
6.6 Определение расчетной нагрузки, передающийся на свайный фундамент под ось Б.51
6.6. Определение среднего вертикального давления p под подошвой условного фундамента и проверка выполнения условия p≤R.    54
6.7 Расчет конечной (стабилизационной осадки столбчатого свайного фундамента)    58
7. Проектирование котлована    61
8. Расчет объема земляных работ.    62
9. Список литературы    62


расчетные характеристики.
Слой 1: Насыпь не слежавшаяся
             Удельный вес грунта: γ=16 ρ=1,6 кН/м3
Слой 2: Пылевато - глинистый грунт
             Природная влажность грунта: W =27,5%
             Влажность грунта на границе текучести: W_L=30%
             Влажность грунта на границе раскатывания: W_P=23%
             Удельный вес грунта: γ =19,5 ρ =1,95 кН/м3
             Удельный вес твердых частиц грунта γ_s=27,1 ρ_s=2,71 кН/м3
Слой 3: Пылевато - глинистый грунт
             Природная влажность грунта: W =28,5%
             Влажность грунта на границе текучести: W_L=29%
             Влажность грунта на границе раскатывания: W_P=16%
             Удельный вес грунта: γ =19,4 ρ =1,94 кН/м3
             Удельный вес твердых частиц грунта γ_s=27,1 ρ_s=2,71 кН/м3
Слой 4: Песок
             Природная влажность грунта: W =22,2%
             Удельный вес грунта γ =20,6 ρ =2,06 кН/м3
             Удельный вес твердых частиц грунта γ_s=27 ρ_s=2,7 кН/м3
Дата добавления: 14.01.2024
РП 2548. ПБ СС Детский сад в Ленинградской области | AutoCad

Проектом предлагается оснащение следующими системами:
-cистема пожарной сигнализации;
-cистема охранной сигнализации;
-система светового и звукового оповещения при пожаре и управление эвакуацией людей.
В состав системы входят следующие приборы управления и исполнительные блоки: 
-пуль контроля и управления "Рубеж-МК2";
-пульт контроля и управления "Рубеж-20П";
-пульт дистанционного управления "Рубеж-ПДУ";
-извещатель пожарный дымовой «ИП-212-64»;
-ручные пожарные извещатели «ИПР-513-11»;
-извещатель оптико-электронный объемный "ИО 32920-2";
-извещатель оптико-электронный поверхностный "ИО 40920-2";
-объектовая станция РСПИ «Стрелец-Мониторинг»;
-изолятор шлейфа "ИЗ-1-R3";
-извещатель тепловой "ИП 101-29-PR-R3 W1.02".


Общие данные.
Структурная схема охранно-пожарной сигнализации и системы оповещения 
План расположения оборудования речевого оповещения на 1 этаже 
План расположения оборудования речевого оповещения на 2 этаже 
План расположения оборудования светового оповещения на 1 этаже 
План расположения оборудования светового оповещения на 2 этаже 
План расположения оборудования охранной сигнализации на 1 этаже 
План расположения оборудования охранной сигнализации на 2 этаже 
План расположения оборудования пожарной сигнализации на 1 этаже 
План расположения оборудования пожарной сигнализации на 2 этаже 
План разделения здания на ЗКПС на 1 этаже 
План разделения здания на ЗКПС на 2 этаже 
План разделения здания на ЗКПС на 1 этаже (запотолочный) 
План разделения здания на ЗКПС на 2 этаже (запотолочный) 
План размещения оборудования обратной связи с МГН 
Схемы электрические подключений 
Расчет токопотребления 
Схема установки речевого оповещателя,светового и звукового оповещателя 
Задание на обеспечение электроснабжения


Проектом предусматривается создание на объекте 5 точек прохода системы контроля управления доступом (СКУД). 
Данным проектом предусматривается СКУД и СВН. 
СКУД строится на базе оборудования интегрированной системы «PARSEC NET». 
В состав входят:
-сетевой охранный контроллер «AC-08»;
-настольный считыватель карт доступа «HID/EM-Marine PR-EH08»;
-бесконтактные считыватели карт доступа «PNR-EH15»;
-устройства исполнительные - электромагнитные замки «AL-300»; 
-доводчик дверной «TS-71»;
-кнопки «ВЫХОД» «ST-EX010SM»;
-извещатели охранные магнитоконтактные "ИО 102-26"; источники питания «РАПАН-20».


Общие данные.
Структурная схема системы видеонаблюдения 
Структурная схема системы контроля и управления доступом 
План расположения оборудования СВН на 1 этаже 
План расположения оборудования СВН на 2 этаже 
План расположения оборудования СКУД на 1 этаже 
План расположения оборудования СКУД на 2 этаже 
Расстановка наружной системы видеонаблюдения 
Система вызывной сигнализации для МГН 
Маркировка информационного кабеля 
Эскиз крепления телекамеры 
Монтажная схема щита ЩВН 
Общий вид щита ЩВН 
Схема монтажа оборудования (СКУД) 
Схема подключения оборудования (СКУД) 
Задание на обеспечение электроснабжения (СВН) 
Задание на обеспечение электроснабжения (СКУД) 
Кабельный журнал
Дата добавления: 16.01.2024
КП 2549. Курсовой проект - Вспомогательный корпус предприятия автомобильной промышленности 108 х 54 м в г. Ставрополь | AutoCad

1.Введение    2
2.Климатологические показатели пункта строительства.    3
а) Климатические факторы    3
б) Влажность    4
в) Ветер    5
д) Параметры микроклимата помещений:    6
3. Расчетные параметры производственной среды    7
а) Температурно-влажностной режим    7
б) Общая характеристика проектируемого здания    7
4. Объемно-планировочные решения    8
а) Принятые решения объемно-планировочной композиции    8
б)Расчет административно-бытового корпуса    8
в) Системы отопления, вентиляции и освещения производственных помещений    10
5.Конструктивное решение здания    10
а)Принятые строительная, конструктивная система и конструктивная схема здания    10
6. Противопожарные мероприятия в производственном здании    13
а) Определение степени огнестойкости    13
б) Обеспечение необходимых путей эвакуации.    14
7.Обеспечение выходов на кровлю    14
8.Физико-технические расчеты ограждающих конструкций    16
а)Расчет толщины теплоизоляционного слоя наружной стены и покрытия    16
9. Определение количества остекления    18
10. Спецификация основных сборных элементов.    19
11. Список используемой литературы.    20


- отделение приемки
- отделение складирования  материалов
- отделение складирования комплектующих изделий
- отделение изготовления заготовок,
- склад готовой продукции
- отделение штамповки деталей кузовов
- отделение обработки и отделки изделий
- отделение сборки кузовов.
Форма ПЗ в плане – прямоугольная 
Внутренняя структура здания – пролетная 
Этажность – 3 этажа
Количество пролетов – 3 
Габаритные размеры здания – 54х108 м
Высота здания – 26,7 м 
Наличие АБК – есть, пристроено к производственному зданию в осях А – Б. 
Размеры АБК в плане – 21 х 48 м. 
Конструкция ворот – распашные, 4,8 х 4,2 м 
Пути эвакуации при ЧС – эвакуационные выходы
Связь между отделениями осуществляется через дверные проемы (эвакуационными выходами) 
Решение естественного освещения производственных помещений – комбинированное, с использованием окон 
Размеры оконного блока – 6 х 1,2 м


•Шаг колонн составляет 6 м.
•Строительная система – каркасно-панельная. Материал несущих конструкций – бетон. Основные несущие конструкции – колонны, фермы и балки. 
•Каркас здания состоит из железобетонных колонн, ферм и балок. 
•Проектом обеспечена пространственная жесткость здания. Поперечная жесткость обеспечена благодаря жесткому защемлению колонн в фундаменте, установке железобетонных ферм и балок в поперечном направлении, а также установке фундаментных балок. Продольная – горизонтальным связям крестового типа и установке фундаментных балок.



Дата добавления: 17.01.2024


















КП 2550. Курсовой проект - 12-ти этажное жилое здание 31,2 х 14,7 м в г. Орел | AutoCad

ВВЕДЕНИЕ    3
1. Исходные данные    4
2. Состав курсового проекта    5
3. Графическая часть    5
4. Объемно-планировочные решения    7
5. Конструктивное решение здания    7
5.1 Фундамент    7
5.2 Перекрытия    7
5.3 Конструкция стен    7
5.4 Крыша    8
5.5 Окна    8
5.6 Двери    8
5.7 Лестница    8
6. Расчеты    9
6.1 Теплотехнические расчеты ограждающих конструкций зданий    9
6.1.1 Теплотехнический расчет наружных стен здания    9
6.1.2 Теплотехнический расчет цокольных стен здания    11
6.1.3 Теплотехнический расчет кровли    12
6.2 Расчет изоляции воздушного шума межквартирной перегородки    14
6.3 Упрощенный сбор нагрузок на фундамент    16
Список литературы    20


«1» - «8»: 31,2 м
«А» - «Ж»: 14,70 м.
Общая высота здания составляет 42,883 м.
Здание имеет 11 надземных жилых этажей, на каждом этаже типовой секции расположены 2 трехкомнатные, 2 двухкомнатные и 1 однокомнатные квартиры.
Первый этаж нежилой, на котором расположены фотоателье, бильярдный клуб, многофункц. центр соц. обслуживания населения и страховая компания. Также расположена входная группа, имеющая двойной тамбур, комнату консьержа, оборудованную сан. узлом, помещение для хранения колясок. Мусороудаление осуществляется с помощью мусоропровода, который выходит в мусосборную камеру, расположенную в объеме 1-го этажа. Вывоз мусора осуществляется через отдельный выход. 
Высота этажа составляет 3,0 м. Здание имеет 2 входа.
Переход между этажами осуществляется с помощью монолитной железобетонной двухмаршевой лестницы, расположенной в незадымляемой лестничной клетке типа Н1, а также установлены два лифта: грузопассажирский (грузоподъемность 630 кг) и пассажирский (грузоподъемность 400 кг).
Запроектирован теплый технический этаж высотой 3,0 м с выходом из лестничной клетки на кровлю. В объеме технического этажа расположено машинное отделение лифта.


-горизонтальных связей - между поперечными и продольными стенами поярусно. 
-вертикальных связей - связывающих стены одного яруса с выше- и нижележащими ярусами.
Представлен единой монолитной фундаментной плитой, толщина которой составляет 700 мм. Плита расположена под площадью всего здания и по периметру имеет расширение, равное 480 мм. 
Предусмотрена оклеечная вертикальная гидроизоляция двумя слоями рубероида с обмазкой битумной мастикой.
Несущий слой междуэтажного перекрытия выполнен в виде единой монолитной плиты толщиной 200 мм. Выравнивание выполнено с помощью цементно-песчаной стяжки толщиной 20 мм. Для обеспечения требуемого уровня шумоизоляции используется звукоизоляционная мембрана Тексаунд 70. Следующий слой перекрытия – армированная ЦПС толщиной 60 мм. Отелочный слой представлен ламинатом или керамической плиткой
В плите перекрытия предусмотрены проемы под вентиляционные шахты и инженерные коммуникации.
Несущие стены выполнены из монолитного железобетона толщиной 200 мм из условий армирования. 
Наружные стены – трехслойные с эффективным утеплителем ЭППС. В зонах примыкания окон и дверей заложен негорючий утеплитель – минеральная вата. Наружные стены выполнены из железобетона толщиной 200 мм, утеплителя ЭППС Технониколь Carbon Eco толщиной 100 мм и облицовочного слоя из  силикатного 11-ти пустотного кирпича на ЦПР 120 мм. Общая толщина составляет 420 мм. С внутренней стороны все стены оштукатурены и подготовлены к чистовой отделке.
Внутреннее пространство разделено на отдельные помещения перегородками из кирпича 120мм. Отделка перегородок - штукатурка.
Технический этаж является теплым, огражден утепленными стенами и утепленной кровлей. Дополнительно обогревается отработанным воздухом из вентиляционных каналов. Вентиляция здания осуществляется через единую вент. шахту, выходящую на кровлю.
Покрытие технического этажа выполнено монолитной железобетонной плитой толщиной 200 мм.
Дата добавления: 18.01.2024


© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.