Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%20%20%20

Найдено совпадений - 585 за 0.00 сек.


КП 76. Курсовий проект - Житловий і промисловий квартал в м. Суми | AutoCad
Нижче приведені розміри прийнятих дитсадків на 280 і 320 місць

Технічні характеристики
1. Загальна площа кварталу: 24 га.
2. Площа забудови: 31460,8 м2.
3. Загальна площа в житлових будинках: 22270,5м2.
4. Довжини проїздів і доріг: 4550 м.
5. Площа асфальтових покритів: 39635 м2.
6. Щільність житлового фонду: 0,09
7. Коефіцієнт використання території: 0,3
8. Кількість жителів на 1 га території: 240
9. Щільність сітки проїздів: 0,019
10. Щільність сітки твердих покриттів: 0,17
11. Відсоток озеленення території: 70,3

Промислова зона.
Визначення промислової зони.
Розрахунок промислової зони виконуємо за даними завдання: кількість населення, помножена на 0,72.
Кількість кадрів: 4140 чол.
Під будівлями повинно бути 40-60% від загальної площі території. Але у данному проекті пропоную збільшити загальну площу території приблизно у два рази ніж площа під забудову будівлями.Тоді отримаємо, що загальна площа забудови промислового майданчика: 55800*2 м2 = 15 га.
Площа передзаводської зони визначається як 0,6 га на 1000 населення і становить 2,484 га.
Розділивши ділянку на елементарні частини і виразивши невідому величину через Х, знаходимо невідому величину і визначаємо її розміри:
Х=35 м, Довжина – 525 м, ширина - 350
Отже приймаємо ці розміри кварталу.

Технічні характеристики генплану
1. Загальна площа території кварталу: 16 га.
2. Площа забудови: 62278 м2
3. Площа відкритих складів:
4. Площа автомобільних шляхів і брукованих територій: 15467 м2.
5. Площа тротуарів та бруківки: 9520 м2.
6. Площа залізничних колій: 8720 м2.
7. Площа озеленення: 60164 м2.
8. Площа використовуваної території: 77745 м2.
9. Протяжність зовнішньої огорожі майданчика: 2,185 км.
10. Коефіцієнт використання території: 0,63
11. Коефіцієнт забудови: 0,39
12. Коефіцієнт озеленення: 0,51 .
.
Дата добавления: 20.11.2011
ДП 77. Креслення - 7 - ми поверховий гуртожиток на 205 місць 30,5 х 18,9 в м. Луганськ | AutoCad

Гуртожиток виконує всі функції перебування 205 жителів. Режим роботи гуртожитку - цілодобово на протязі року. Штат обслуговуючого персоналу складає 8 чоловік.
Будівельні параметри
Умовно будівля розбита на два блоки: блок А та блок Б.
Розміри блока А – 15,9х18,9 м, поперечник – три прольоти шириною 7,2 х 2,2 х 7,2 м. Перекриття – збірні залізобетонні плити.
Розміри блока Б – 8,5х25 м, поперечник – два прольоти шириною 6,4 м та два прольоти шириною 6,1 м. Перекриття – збірні залізобетонні плити. Між собою блоки сполучені сходовою кліткою, вестибулем та шахтою ліфта.
Будівля запроектирована з повздовжніми та поперечними несучими стінами з опиранням на них плит перекриття. Жорсткість будівлі в вертикальній площині забезпечена несучими повздовжніми та поперечними стінами, а також сходовими клітками. Жорсткість будівлі в горизонтальній площині забезпечена настилом перекриття.

В будівлі застосовуються збірні залізобетонні стрічкові фундаменти під несучі цегляні стіни. Залізобетонні та бетонні конструкції фундаментів виконати на сульфатостійких цементах.
Стіни виконуються із керамічної цегли марки 75 ДСТУ Б В.2.7-61-97 на розчині марки 25, товщиной 510 мм. Товщина внутрішніх стін приймається 380 мм, а перегородок 120 мм. Утеплювач – плити пінополістирольні товщиною 85 мм.
Плити покриття та перекриття – збірні залізобетонні багатопустотні по серії 1.141-1 в. 60. товщиной 220 мм.
Покрівля запроектована плоска суміщена з внутрішнім водостоком. По плитам покриттяия влаштовується пароізоляція. Потім вкладається утеплювач із жорстких мінераловатних плит, вирівнюється цементно-пісчаною стяжкою. Матеріал покрівлі – 2 шари гідроізолу на гарячій бітумній мастиці. Парапетну стіну покривають зверху покрівельною оцинкованою сталею.
Дата добавления: 25.11.2011
ДП 78. Дипломний проект (училище) - Двохповерховий восьмикімнатний котедж 15,1 х 16,8 м в Волинській області | AutoCad

Вихідні дані проекту
Розділ І : Архітектурно-будівельна частина.
1.1. Вихідні дані та характеристика будівлі
1.2.Генплан
1.3.Об’ємно-планувальне та архітектурно-конструктивне рішення
1.4.Внутрішнє і зовнішнє опорядження
1.5.Інженерні мережі. Санітарно-технічне обладнання
1.6.Техніко-економічні показники
Розділ ІІ : Технологія та організація будівництва
Підрозділ I – Календарний план
2.1.1. Вступ
2.1.2.Вихідні для складування календарного плану
2.1.3.Короткий опис робіт підготовчого періоду
2.1.4.Опис виконання основних будівельно-монтажних робіт
2.1.5.Визначення об’ємів робіт
2.1.6. Вибір методів виконання робіт,машин і механізмів
2.1.7 Визначення трудомісткості робіт і затрат машинного часу
2.1.8. Визначення трудомісткості робіт не включених у номенклатуру та спец робіт
2.1.9.Визначення МТР
2.1.10. Проектування календарного плану
2.1.11.Графік постачання будівельних конструкцій, виробів і матеріалів
2.1.12.Складування графіка роботи будівельних машин та механізмів
2.1.13.Визначення техніко-економічних показників
Підрозділ II - Будгенплан
2.2.1.Сфера застосування будівельного генерального плану. Основні принципи проектування буд генпланів
2.2.2.Розрахунок складських приміщень та відкритих майданьчиків
2.2.3.Проектування тимчасових будівель і споруд
2.2.4.Організація тимчасового водопостачання
2.2.5.Розрахунок потреб в електроенергії
2.2.6.ТЕП буд генпланів
Підрозділ III – Технологічна карта
2.3.1.Вступ
2.3.2.Сфера застосування
2.3.3.Технологія
2.3.4.Техніко-економічні показники
2.3.5.Матеріаль-технічні ресурси
2.3.6.Контроль якості
2.3.7.Охорона праці
Розділ ІІІ : Розрахунок будівельних конструкцій
3.1. Розрахунок плити перекриття з круглими порожнинами
3.2. Визначення внутрішніх зусиль
3.3. Розрахунок плити за граничними станами прешої групи
3.3.1. Розрахунок за нормальними перерізами
3.3.2.Розрахунок плити за нахиленими перерізами
3.4. Розрахунок плити за граничними станами другої групи
3.4.1. Визначення геометричник характеристик перерізу
3.4.2. Визначення втрат попереднього натягу при натягуванні арматури на опори
3.4.3. Розрахунок на утворення тріщин, нормальної до повздовжньої осі елемента
3.5.1. Визначення ширини розкриття тріщин від нетривалої дії повного навантаження
3.5.2 Визначення ширини розкриття тріщин від нетривалої дії постійного та довготривалого тимчасового навантаження
3.6. Розрахунок на утворення тріщин,нахилених до повздовжньої осі елемента
3.7. Визначення пригинів на ділянках з тріщинами
3.7.1. Розрахунок кривини при нетривалій дії повного навантаження
3.7.2. Розрахунок кривини при короткотривалій дії довготривалого навантаження
3.7.3. Розрахунок кривини від довготривалої дії довготривалого навантаження
Розділ V : Охорона праці та навколишнього середовища
5.1. Обгрунтування актуальності вирішення питань охорони праці в ході проектної розробки
5.2. Аналіз будівельного процесу на предмет виявлення небезпечних та шкідливих виробничих факторів
5.2.1.Вимоги безпеки на будівельному майданчику
5.3.Основні нормативні вимоги безпеки при виконанні окремих видів робіт та експлуатації машин і механізмів
5.3.1. Вимоги безпеки під час виконання земляних робот
5.3.2.Вимоги безпеки під час виконання мулярних робіт
5.3.3.Вимоги безпеки під час виконання бетонних робіт
5.3.4.Вимоги безпеки під час виконання монтажних робіт
5.3.5.Покрівельні роботи
5.3.6.Опоряджувальня роботи
5.4.Запроектовані заходи та технічні рішення для ліквідації і зменшення впливу небезпечних та шкідливих виробничих факторів
5.5. Запроектовані заходи протипожежної профілактики на будівельному майданчику…
5.6.Заходи охорони навколишнього середовища
Література

Грунти : відносяться до ІІ-гої категорії, термін стиснення яких завершується з кінцем будівництва.
Температура : найбільш холодної п’ятиденки -20 С
Снігове навантаження : 50 кгс/м
Глибина промерзання грунту : 90 см
Вітрове навантаження : 38 кгс/м

Конструктивна схема : безкаркасна з повздовжніми та поперечними несучими стінами.
Фундаменти : монолітні стрічкові
Стіни: цегляні : зовнішні 550мм ( з внутрішнім утеплювачем 40мм)
: внутрішні 380 мм.
Перегородки : цегляні 120 мм
Перекриття : перекриття 1-го поверху- залізобетонні пустотні плити товщиною 220мм. Перекриття 2-го поверху- дерев'яні балки
Покриття : скатне , похилі крокви із пиломатеріалів , поверх яких влаштовується покриття з металочерепиці .
Підлога :з ламінату, із керамічної плитки по технології Ceresit, бетонна, чорнова горища.
Двері : дерев’яні фільончасті ( спецзамовлення ).
Вікна : металопластикові (спецзамовлення).
Внутрішнє оздоблення : поліпшена штукатурка, шпатлівка, пофарбування водоемульсійними фарбами, облицювання керамічною плиткою,гкл.
Зовнішнє оздоблення : оштукатурення високоякісною декоративною штукатуркою Ceresit СТ 64.

Оздоблення фасадів вирішується в декоративному оштукатуренні стін та облицювання рваним каменем цоколя.
Розміщення будівлі згідно з генпланом забезпечує раціональну доступність без порушення транспортно-пішохідних зв’язків.
Поруч з будівлею влаштовується стоянка для одного легкового автомобіля.
Архітектурними прийомами вирішено легкість споруди, що відповідає сучасним вимогам.
Дана житлова будівля запроектована на 2 поверхи.
На першому поверсі розміщені: їдальня, котельня, кухня, вітальня, гараж, сан-вузол, коридор, кабінет, тамбур.
На другому поверсі розміщені: гардероб, 3-спальні, кабінет дизайнера, ванна, коридор, дитяча, тераса.
Запроектовано один головний вхід. .
Дата добавления: 26.11.2011
КП 79. Курсовой проект - Расчет ковшового ленточного конвейера Q = 18 т | Компас


Содержание
Введение
1. Уточнение основных исходных данных
1.1. Сведения о ленточном конвейере
2. Расчет ленты конвейера
2.1. Установление нормативных значений расчетных величин
2.2. Определение основных параметров рабочего органа
2.3. Проверка прочности тягового органа
2.4. Выбор основных конструктивных элементов конвейера
3. Расчет тягового усилия
3.1. Тяговый расчет
3.2. Расчет тягового органа на прочность. Уточнение его размеров
4. Расчет и выбор электропривода конвейера
4.1. Определение необходимой мощности конвейера.
Выбор электродвигателя
4.2. Кинематический расчет. Выбор элементов передач
4.3. Проверка двигателя на достаточность пускового момента
5. Расчет и выбор тормоза
Вывод
Список использованной литературы
Приложение А. Спецификации


1. Производительность, кг/ч                                            18000
2. Установленная мощность электродвигателя, кВт                    2,2
3. Частота вращения вала барабана, об/мин                                53
4. Скорость ленты, м/с                                                1,75
5. Высота подьема м                                                             20

ВЫВОД
В данной курсовой работе был рассчитан ковшовый елеватор по заданным исходным данным с соблюдением правил технической документации. Выбрана Лента 3 – 500 – 3 – БКНЛ – 65 – 3 – В ГОСТ 20 - 76, погонная масса ленты qл = 3.55 кг/м, ковш вместимостью , погонная масса ходовой части конвейера qк = 24.07 кг/м.
Проведен тяговый расчет натяжения ленты и построен грфик ее натяжении, из которого видно, что Fmax = 6417.84 H, Fmin = 1000 H, тяговая сила на приводном барабане F0 = 1016,2 H.
Элеватор приводится в движение c помощью двигателя 4А100L6У3 мощностью 2.2 кВт и частотой вращения 950 об/мин. и редуктором типа Ц2-250 с передаточным числом uр=16,3 и мощностью на быстроходном валу Рр=8,2 кВт. Упругую втулочно-пальцеваю муфта с номинальным крутящим моментом Тм=63 Н•м, наибольшим диаметром D=100 мм.
Выбран тормоз ТКТ-200/100 с наибольшим тормозным моментом 40 Н•м, который устанавливается на муфте между электродвигателем и редуктором.
Рассчитано время пуска элеватора tп = 1 с, время торможения tт = 2.9 с.
Дата добавления: 09.12.2011
КП 80. Курсовой проект - Барабанный грохот | Компас


СОДЕРЖАНИЕ
Введение
1 НАЗНАЧЕНИЕ МАШИНЫ, ОТРАСЛИ ИСПОЛЬЗОВАНИЯ, ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
2 АНАЛИЗ СУЩЕСТВУЮЩИХ КОНСТРУКТИВНЫХ РЕШЕНИЙ ПРОЕКТИРУЕМОЙ МАШИНЫ
2.1 Классификация грохотов
2.1.1 Валковый грохот
2.1.2 Гирационный грохот
2.1.3 Грохот инерционный ГИ – 300
2.1.4 Грохоты инерционные типов ГИЛ, ГИК
2.1.5 Грохоты инерционные самобалансирные типа ГИСЛ
2.1.6 Барабанные грохоты типа ГЦЛ
3 ОБОСНОВАНИЕ ПРИНЯТЫХ РЕШЕНИЙ
4 РАСЧЕТ БАРАБАННОГО ГРОХОТА
4.1 Разработка кинематической схемы и кинематические расчеты
4.2 Расчет основных параметров барабанного грохота
4.3 Определение производительности, выбор мощности привода и передаточного числа редуктора грохота
4.4 Расчет фрикционного механизма барабанного грохота
5 ПРОЧНОСТНЫЕ РАСЧЕТЫ
5.1 Расчет барабана на прочность
5.2 Расчет вала на прочность
5.2.1 Проектный расчет вала
5.2.2 Уточненный расчет вала
5.3 Выбор и расчет шпоночных соединений
5.4 Расчет долговечности подшипников качения
5.5. Выбор муфты
6 МОНТАЖ ОБОРУДОВАНИЯ
7 РЕМОНТ, СМАЗКА И ЭКСПЛУАТАЦИЯ ОБОРУДОВАНИЯ
ВЫВОДЫ
ПЕРЕЧЕНЬ ССЫЛОК

В качестве исходной конструкции был принят барабан, с просеивающей поверхностью из спирали, расстояние между витками которой соответствует размерам подрешетного продукта.
Рама грохота, кожух, загрузочная и разгрузочная течки, барабан изготавливаются из конструкционной стали Ст3, бандаж барабана изготавливается из чугуна СЧ15 твердостью НВ 225, а фрикционные катки изготавливаются из Стали 35Л.
В кинематическом расчете определяем диаметр и длину барабана, скорость движения материала по ситу, угловую скорость вращения барабана и другие технологические параметры, необходимые для обеспечения заданной производительности Q = 1000 т/час, так как грохот установлен на углеобогатительной фабрике производительностью 1000 т/час по одной ветви.

Техническая характеристика грохота ГЦЛ – 3:















Дата добавления: 05.01.2012
81. Промышленная вентеляция | AutoCad

Проектируемое здание деревообрабатывающего цеха расположено в г. Евпатория – 45ос.ш;
Барометрическое давление: 1010 гПа;
Категория работ, выполняемых в цехе: IIа (энергозатраты 175-232Вт);
Климатические данные:
Зимний период: температура наружного воздуха в зимний период tзн=-16оС,
скорость наружного воздуха в зимний период vзн=7,1м/с,
Летний период: температура наружного воздуха в летний период tлн=26,8оС,
скорость наружного воздуха в летний период vлн=4м/с.
Среднесуточная амплитуда: Аtв = 8,4 оС;
Количество градусосуток отопительного периода: ГСОП = 2324;
Температурная зона: IV
Параметры внутреннего воздуха:
температура внутреннего воздуха в зимний период tзв=19оС;
температура внутреннего воздуха в летний период tлв=29оС;
Пожаробезопасность: категория Д;
Условия эксплуатации констрцкции: Б.
2. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ.
2.1. Теплотехнический расчет стены.
Конструкция стены
1-слой: Штукатурка цементно-пещаная g1=1600кг/м3 l1=0.17Вт/(м2*оС) d1=0.02м S1=3,06 Вт/(м2*оС)
2-слой: перлитобетон g2=800кг/м3 l2=0.38Вт/(м2*оС) d2=х м S2=5,32Вт/(м2*оС)
3-слой: известко-песчаный раствор g3=1800кг/м3 l3=0.93Вт/(м2*оС) d3=0.015м S3=11,09 Вт/(м2*оС)

Нормативное термическое сопротивление: Rон = 0,7 м2*К/Вт.
Толщина 2-го слоя:
d2=

Фактическое термическое сопротивление:
Rфст=Rн+Rв+d1/l1+d2ф/l2+d3/l3+d4/l4 =1/23+1/8,7+0,02/0,17+0,3/0,38+ 0,015/0,93=1,08 м2*К/Вт Rфст=1,08 Rон=0,7 м2*К/Вт. – условие выполняется.
Коэффициент теплопередачи стены: кфст=1/Rфст = 1/1,08 = 0,92 Вт/м2*С.

2.2. Теплотехнический расчет покрытия.
Конструкция покрытия (основные расчетные элементы)
1-слой: керамзитобетонная плита g1=1800кг/м3 l1=0.79Вт/(м2*оС) d1=0,02м S1=10,77 Вт/(м2*оС)
2-слой: гравий керамзитовый g2=800кг/м3 l2=0.18Вт/(м2*оС) d2=х м S2=1,51Вт/(м2*оС)
3-слой: цементно-песчаный раствор g3=1600кг/м3 l3=0.81Вт/(м2*оС) d3=0,02м S3=9,76Вт/(м2*оС)
4-слой: руберотд g4=600кг/м3 l4=0.17Вт/(м2*оС) d4=0,0045 м S4=0.3,53Вт/(м2*оС)
Нормативное термическое сопротивление: Rон = 0.9м2*К/Вт.
Толщина 3 слоя:
d2=Принимаем фактическую толщину 3 слоя :d3ф = 0,17м.
Фактическое термическое сопротивление:
Rфпт=Rн+Rв+d1/l1+d2/l2+d3/l3+d4/l4=1/23+1/8,7+0,02/0,79+ 0,08/0,12+0,02/0,81+ 0,0045/0,17=1,18м2*К/ВтRон=0.9м2К/Вт.
Коэффициент теплопередачи стены: кфпт=1/Rфпт = 1/1,18 = 0,85Вт/м2*К.
2.3. Теплотехнический расчет пола.
Пол неутепленный на грунте:
RcI =2,1 м С/Вт \К I =1/2,1=0,48 Вт/м С
RcII =4,3 м С/Вт К II =1/4,3=0,23 Вт/м С
RcIII =8,6 м С/Вт К III =1/8,6=0,116 Вт/м С
RcIV =14,2м С/Вт К IV =1/14,2=0,07 Вт/м С
2.4. Термическое сопротивление дверей и окон.
Согласно ГСОП=2324 определяем нормативное термическое сопротивление окон Rнок=0,32м2*К/Вт, принимаем окна с двойным остеклением в раздельных переплетах
Rфок=0,44м2*К/ВтRнок=0,32м2*К/Вт.
Костек=1/0,44-0,92=1,35Вт/м2*К.
Также Rндвери,ворота=0,42м2*К/Вт
Кдвери, ворота=1/0,42-0,35=1,03Вт/м2*К.

3. РАСЧЕТ ТЕПЛОВОЙ ИНЕРЦИИ.

Тепловая инерция наружной стены определяется по формуле:
D = R1s1 + R2s2 + R3s3 + R4s4 +R5S5
D = (0,02/0,17)3,06+(0,3/0,38)5,32+(0,015/0,93)*11,09=4,74>0,7
где R1, R2, R3, R4 – термическое сопротивление слоев наружной стены, м2 К/Вт;
s1, s2, s3, s4 – расчетные коэффициенты теплоусвоения отдельных слоев наружной стены, Вт/(м2 К).
Для покрытия:
D = R1s1 + R2s2 + R3s3 + R4s4
D = (0,02/0,79)10,77+(0,17/0,18)1,51+(0,02/0,81)*9,76+(0,0045/0,17)3,53=4,74>0,9 .
Следовательно, условие выполняется, а расчет выполнен правильно.
В соответствии с требованиями допустимая санитарно-гигиеническая разность между температурой внутреннего воздуха в помещении приведенной температурой внутренней поверхности ограждающей конструкции (t, 0С), не должна превышать для стен 7,00С, для покрытий 4,00С.
Определяем действительное значение температурного перепада, использую данные теплотехнических расчетов ограждающих конструкций:
t = (tв – tн)/(Rв)
где tв – температура воздуха в помещении, 0С;
tн - температура наружного воздуха, 0С.
Наружная стена tст =(19-(-16))/(8,7*1,08)=3,72<7,00С.
Покрытие tст =(19-(-16))/(8,7*1,18)=3,41<4,00С.
Минимально допустимая температура внутренней поверхности окон, должна быть tmin не менее 40С. Определим указанное значение по зависимости
tmin=tв-(tв-tн)/(Rокв)=19-(19-(-16))/(0,44*8,7)=9,86>4,00С.







4. ТЕПЛОУСТОЙЧИВОСТЬ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ.

В районах со среднемесячной температурой июля 21°С амплитуда колебаний температуры внутренней поверхности ограждающих конструкций зданий, в которых соблюдаются оптимальные нормы или по условиям технологии температуры и относительной влажности воздуха в рабочей зоне, не должна быть более требуемой амплитуды.
Для производственных помещений, в которых поддерживаются допустимые метеорологические условия, данные по теплоустойчивости ограждающих конструкций, используются при расчете солнечной радиации.
При определении коэффициента теплоусвоения, Y, Вт/(м2 0С), для стен, покрытий и пола учитывается только один-два активных внутренних слоя конструкции ограждения:
для стен Yс и покрытия Yпк с тепловой инерцией D1, принимается равным коэффициенту теплоусвоения s, материала этого слоя конструкции:
для стены:
Dкб=(і /і)si=(0,3/0,38)*5,32=4,2>1,0 м2К/Вт,
Yс = s = 5,32 Вт/(м2 К),
для покрытия:
Dкг=(і /і)si=(0,17/0,18)*1,51=1,4>1,0 м2К/Вт,
Yп = s = 1,51 Вт/(м2 К).
для внутренних перегородок:
Yпг = Rпгsпг2 , = 0,2175,28^2= 6,05 Вт/(м2 К). -
где Rпг – термическое сопротивление части слоя, м, перегородки, разделенной по оси
симметрии;
sпг – коэффициент теплоусвоения материала слоя на границе разделения.
Показатель теплоусвоения поверхности пола (если первый слой конструкции пола) имеет тепловую инерцию Dп 0,5, определяется по формуле:
Тепловая инерция первого слоя пола:
Dкг = (і /і)si = (0,05/1,92)*18,35 =0,51 > 0,5 м2К/Вт,
Yп = 2s1 = 218,35 = 36,7 м2К/Вт
где s1 – коэффициент теплоусвоения первого слоя пола, Вт/(м2 0С).
Коэффициент теплоусвоения остекления определяется по формуле:
Yос = 1/(Rос –1/в) = 1/(0,44 –1/8,7) = 3,08 м2К/Вт
где Rос – термическое сопротивление остекления светового проема м2 0С/Вт;
в – коэффициент теплоотдачи, равный 8,7 Вт/(м2 0С);
Для оборудования, установленного в помещении:
Yоб = 3,610-3Gобc , = 3,610-32000481,5 = 34,6 м2К/Вт
где Gоб – масса оборудования, кг;
с – удельная теплоемкость оборудования, Дж/(кг 0С), для металла 481,5 Дж/(кг 0С).

5. РАСЧЕТ ТЕПЛОПОТЕРЬ

5.1. Теплопотери через ограждающие конструкции.
Расчетные теплопотери отопительных помещений Q1, Вт, рассчитываются по формуле:
Q1 = Qa + Qв,
где Qa – тепловой поток, Вт, через ограждающие конструкции;
Qв - потери теплоты, Вт, на нагревание вентиляционного воздуха.

Основные и дополнительные теплопотери определяют, подытоживая потери теплоты через отдельные ограждающие конструкции, Qа, Вт, с округлением до 10 Вт для помещений, по формуле:
Qа = Fn(tв - tн)(1 + ) k,
где F - расчетная площадь ограждающие конструкции, м2;
k - коэффициент теплопередачи ограждающие конструкции, Вт/(м2 0С);
tв - расчетная температура внутреннего воздуха, 0С, с учетом его повышения при высоте помещения более 4 м;
tн – расчетная температура внешнего воздуха, 0С, для холодного периода года при расчете потерь теплоты через внешние ограждения, или температура сопредельного помещения, если его температура более чем на 30С отличается от температуры помещения , для которого рассчитываются теплопотери;
- дополнительные теплопотери;
n – коэффициент, который зависит от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху (для стен, покрытий n = 1,0).

Расчет теплопотерь на нагрев вентиляционного воздуха.
Потери теплоты на нагревание вентиляционного воздуха Qв, Вт, рассчитываются для каждого отопительного помещения, которое имеет одно ли большее количество окон или балконной двери в внешних стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле
Qв = 0,337Aп h (tв –tн),
где Ап – площадь пола помещение, м2;
h – высота помещения от пола к потолку, г, но не более 3,5 м.
Расчет теплопотерь сведенный в табл. 5.1.

Таблица 5.1.1 - Теплопотери механического цеха при tв=190С

№ назв.пом. огрождения К (tв-tн)*n 1+ Теплопотери, Вт
вид размер, a/b F,м2 Qa Qв Qі
101 Цех, +19 НС-С3 36 4 144 0,92 35 1,005 4659 63438,228 99954
36 4,3 154,8 0,92 38 1,005 5438
4ДО 4,5 4 72 1,35 35 1,005 3398
Ворота 4,2 4 16,8 1,03 35 1,005 607
Пол 1,005
1 - - 72 0,48 35 1,005 1200
2 - - 72 0,23 35 1,005 586
3 - - 96 0,12 35 1,005 391
4 - - 408 0,07 35 1,005 1006
Покрытие 36 18 648 0,85 38 1,005 19231
102 Тех. Пом., +5 НС-С3 4 4 16 0,92 35 1,005 518 0 10524
4 4,3 17,2 0,92 38 1,005 604
НС-СВ 18 4 72 0,92 35 1,005 2330
18 4,3 77,4 0,92 38 1,005 2719
НС-НВ 4 4 16 0,92 35 1,005 518
4 4,3 17,2 0,92 38 1,005 604
Пол 1,005
1 - - 52 0,48 35 1,005 866,67
2 - - 28 0,23 35 1,005 227,91
Покрытие 4 18 72 0,85 38 1,005 2137

Расчетные температуры воздуха при определении теплопотерь через ограждающие конструкции дома, принимаются:
а) для ограждений по высоте до 4 м от пола и для пола - температура в рабочей зоне;
б) для кровли - температура воздуха под кровлей
tв.с = tр.с + t (h - 2)=90+1*(8,3-2)=25,3 0С
где t - температурный градиент, который показывает повышение температуры воздух по
высоте помещения;
t = (0,7...1,2)0С/м, принимаем t = 1, h - высота цеха, м;
в) для стен и застекленных поверхностей ограждения, расположенных выше 4 м от пола - среднюю температуру воздуха в верхней зоне и в рабочей зоне.

5.2. Теплопотери на нагрев ввозимого материала.
Для холодного периода:
Qм=0,278*Gм*см*(tв – tн)*= 0,278*470*2,3*<19-(-16)]*0,4 = 4207Вт4,2 кВт.

Дата добавления: 04.05.2012
82. Газоснабжение населенного пункта | AutoCad

1.2.1. Расчет годовых потреблений газа на жилые дома.
Расход газа на приготовление пищи на газовой плите в домашних условиях вычисляются по уравнению:
, м3/год (1.2)
- годовой расход газа на приготовление пищи в домашних условиях, м3/год;
N – число жителей в расчетном микрорайоне города, чел;
К1 – коэффициент охвата жителей, пользующихся газом для приготовлениепищи в домашних условиях;
Q1= 2800 МДж/чел.год, норма расхода теплоты приготовление пищи в домашних условиях, согласно ДБН В.2.5-20-2001 «Газоснабжение» <1].
- низшая теплота сгорания принятого газа, МДж/м3;
– коэффициент полезного действия газовой плиты, 0,55-0,65.
м3/год
1.2.2. Расход газа на приготовление горячей воды проточными водонагревателями или в домовых котельных(при отсутствии горячего водоснабжения)находится по уравнению:
, м3/год (1.3)
- годовой расход газа на приготовление горячей воды проточными водонагревателями или в домовых котельных, м3/год;
К3 – коэффициент обеспечения жителей, пользующихся газом для приготовления горячей воды в ГВА или в домовых котельных;
Q3 - норма расхода теплоты приготовление горячей воды (без расхода теплоты на приготовление пищи), МДж/чел.год, <1>Q3=Q - Q1 =8000 – 2800 =5200 МДж/чел. год.;
Q – норма расхода теплоты с учетом на приготовление пищи 8000МДж/ч.г.
– коэффициент полезного действия ГВА=0,85.
м3/год
1.2.3. Расход газа на приготовление горячей воды в районных котельных находится по выражению:
, м3/год (1.4)
- годовой расход газа на централизованное горячее водоснабжение от районных котельных или ТЭЦ, м3/год;
qгв – укрупненный показатель среднечасового расхода теплоты на горячее водоснабжение – 1,57 МДж/ч на 1чел. (с учетом общественных зданий района);
К4 – коэффициент обеспечения жителей, пользующихся централизованным горячим водоснабжением от газифицированных районных котельных или ТЭЦ;
nо – продолжительность отопительного периода, суток;
tхл, tхз – температура водопроводной воды соответственно в отопительный и летний периоды, оС – принимают равным соответственно 5С и 15С;
– коэффициент полезного действия котельной 0,9-0,95;
– коэффициент, учитывающий снижение расхода горячей воды в летний период, принимается равным 0,8.
м3/год

1.2.4. Годовой расход газа предприятиями непроизводственного характера (гостиницы, парикмахерские и др.) определяется по формуле:
, м3/год (1.5)
Где:
- суммарный расход газа на жилые дома
м3/год

1.3. Годовой расход газа объектами коммунально-бытового обслуживания

1.3.1. Механизированные прачечные, включая сушку и глажение белья:
, м3/год (1.6)
Где:
- годовой расход газа на механизированные прачечные, м3/год;
Кмп – коэффициент обеспечения жителей, пользующихся услугами механизированных прачечных = 0,2;
Qмп - норма расхода теплоты на 1 т. Сухого белья, МДж/т <1> – коэффициент полезного действия газоиспользующих установок механизированных прачечных.
м3/год
1.3.2. Дезинфекция белья и одежды:
, м3/год (1.7)
Где:
- годовой расход газа на дезинфекцию белья, м3/год;
Кдез – коэффициент обеспечения механизированными прачечными = 0,2;
Qмп - норма расхода теплоты на 1 т. Сухого белья, МДж/т <1> – коэффициент полезного действия газоиспользующих установок механизированных прачечных.
м3/год
1.3.3. Немеханизированные прачечные с сушильными шкафами:
, м3/год (1.8)
Где:
- годовой расход газа немеханизированными прачечными, м3/год;
Кн. мп. – коэффициент охвата населения, пользующегося услугами немеханизированных прачечных = 0,3;
Qн.мп. - норма расхода теплоты на 1 т. сухого белья, МДж/т <1> – коэффициент полезного действия газоиспользующих установок механизированных прачечных.
м3/год
1.3.4. Расход газа на бани:
, м3/год (1.9)
Где:
- годовой расход газа на помывки в банях, м3/год;
Кб. – коэффициент охвата населения, пользующегося банями = 0,15;
Кв,Кд. – коэффициент охвата населения, пользующегося ванными или душем соответственно Кв =0,1 Кд=0,9;
Qв. - норма расхода теплоты на 1 помывку в ваннах =50, МДж/т <1>Qв. - норма расхода теплоты на 1 помывку в душе =40, МДж/т <1> –коэффициент полезного действия газоиспользующих установок =0,8.
, м3/год
1.4. Расход газа на приготовление пищи в общественных столовых:
, м3/год (1.10)
Коп – коэффициент обеспечения населения общественным питанием:
(1.11)
Где:
Кпр – коэффициент обеспечения общественным питанием приезжих, равен 5%
–коэффициент полезного действия газоиспользующих установок =0,65.
, м3/год
1.5. Расход газа учреждениями здравоохранения
1.5.1. Больницы:
, м3/год (1.12)
Где:
Qпп,Qгв – норма расхода теплоты на приготовление пищи и горячей воды соответственно,<1].
Кб – число койко-мест на 1000 жителей.
м3/год
1.5.2. Родильные дома:
, (м3/год) (1.13)
Крд – число койко-мест на 1000 жителей.
м3/год
1.6. Годовой расход газа на предприятия по производству хлебобулочных изделий.
, м3/год (1.14)
Где:
Qхф, Qхп, Qкн – норма расхода теплоты на выпечку соответственно хлеба формового, подового, булочек и кондитерских изделий <1].
Кхф, Кхп, Ккн – доля выпечки соответственно хлеба формового, подового, булочек и кондитерских изделий в зависимости от характера потребления в конкретном населенном пункте.
–коэффициент полезного действия газоиспользующих установок хлебозаводов =0,75-0,8.
, м3/год
1.7. Годовой расход газа на отопление и вентиляцию жилых и общественных зданий.

1.7.1. Годовой расход газа на отопление жилых и общественных зданий.
, м3/год (1.15)
Где:
К – коэффициент, учитывающий расход теплоты на отопление и вентиляцию зданий =0,25
tвн, tср.о., tр.о. – температура соответственно внутреннего воздуха отапливаемых помещений, средняя наружного воздуха за отопительный сезон, расчетная наружного воздуха для
проектирования отопления, согласно СНиП2.01-82 «Строительная климатология и геофизика» <2].
q – укрупненный показатель максимального часового расхода теплоты на отопление зданий, МДж/ч, на 1м2 жилой площади;

Fж – отапливаемая площадь населенного пункта м2;
Fж=N*f = 177233*20=3544660
f - принятая площадь на 1 человека, 20 м2.
, м3/год
1.7.2. Расход газа на вентиляцию общественных зданий.
, м3/год (1.16)
Где:
Z – среднее число часов работы системы вентиляции общественных зданий в течении суток Z = 16ч;
К1 – коэффициент, учитывающий расход газа на вентиляцию общественных зданий
tрв – расчетная наружная температура для проектирования вентиляции,
tхолпериода <10].
, м3/год

1.8. Годовой расход газа автотранспортом.
Расчет потребления газа автотранспортом следует производить, исходя из суточного пробега автомобиля 100км и среднегодовой загруженности – 300 сут.
Выбираем количество автомобилей произвольно или по моделям с определенным расходом жидкого топлива на 100 км.

Дата добавления: 04.05.2012
РП 83. АС ТХ АТХ КМ ОВ ВК НВК ЭМ Строительство водопроводной сети в Донецкой области | AutoCad

Исходные данные.
Генеральный план.
Технологическая часть.
Отопление и вентиляция.
Водоснабжение и канализация.
Электротехническая часть.
Автоматизация технологических процессов
Архитектурно-строительная часть
Организация строительства
Энергосберегающие мероприятия.
Технико-экономические показатели.
Оценка воздействия на окружающую среду.

Стальная водонапорная башня V=50 м3.
Стальная водонапорная башня высотой H=21м и диаметром 3,0м представляет собой сварную металлоконструкцию из листа Вст.3сп5 толщ.10мм, оборудованную наружной вертикальной металлической лестницей и площадками для обслуживания .
Наружная поверхность башни теплоизолирована плитами минераловатными толщ.60мм с покрытием оцинкованным профнастилом ТП20С-0,7мм.
Фундамент под башню выполнен из монолитного железобетона.
Башня оборудована переливным трубопроводом Ду80 для удаления переливной воды на поверхность грунта через гидрозатвор. Слив воды для проведения ремонтов предусматривается в проектируемом колодце 1/В1 через пожарный гидрант Ду100.
Наружная поверхность емкости башни покрывается эмалью ХВ-124 в 2слоя по слою грунта ХС-010. Внутренняя поверхность емкости башни покрывается железным суриком на олифе за 3 раза.

Сооружение водоподготовки.
Здание (степень огнестойкости –IIIа ) одноэтажное размерами в плане по осям 6,0м х 4,0м. Высота помещения -3,3м (в наиболее высокой точке). Каркас здания металлический с шагом рам -2м. Стеновое ограждение – профнастил ТП-20С-0,7 по прогонам фахверка. Утепление стен и кровли - плиты минераловатные толщиной 140мм. Здание оборудовано двустворчатыми дверями (1шт.), открывающимися оконными блоками (3 шт.). Кровля двускатная из профнастила ТП-20С-0,7 по металлическим прогонам. Вокруг здания выполнена бетонная отмостка шириной 1м.
Фундаменты – монолитные столбчатые железобетонные с установкой по ним сборных ж/б фундаментных балок.
Отделка наружных стен выполняется из окрашенного профнастила светлых тонов по металлическому каркасу.
Дата добавления: 30.08.2012
КП 84. Курсовий проект - Одноповерхова виробнича будівля | AutoCad

Визначення розмірів по вертикалі
При двох кранах Q = 100/20 т приймаємо схему зі ступінчастими колонами і обпираємо підкранові балки на уступ колони. За табл. Д 2.1 для кранів Q = 100/20 т при L=36 м: Hcr=3150 мм, Bcr=300 мм, тип рейки Кр-100 з висотою hr=130мм, висота підкранової балки hbc=1300мм. Визначимо розмір Н2, що включає габаритний розмір крана Hcr, допуск на його виготовлення 100 мм та зазор с =200...400 мм, що враховує провисання конструкцій:
Н2= Hcr + 100 + с = 3150 + 100 + 300 = 3550 мм
(при L=36 м приймаємо с=300 мм)
Отримане значення Н2=3600 мм кратне 200 мм, що відповідає умовам уніфікації.
Н1 = Н0-Н2=12000-3600=8400 мм
Приймаємо глибину заглиблення колони Нв = 600 мм. Тоді повна висота колони буде:
lс=Н0+НВ=12000+600=12600 мм.
Визначаються довжини верхньої і нижньої частини колони:
l2=hbс+hr+H2=1300+130+3600=5030 мм;
l1=H0 – l2+ Hb =12000 – 5030 + 600 = 7570 мм.
Висота уніфікованої ферми з паралельними поясами становить 3150 мм. Ферма шарнірно з’єднується з колонами і спирається на них зверху.

Визначення горизонтальних розмірів.
Приймаємо а = 500мм.
З умови забезпечення горизонтальної жорсткості та проходу в колоні, ширину верхньої частини колони призначаємо h2=1000мм, що більше мм.
З врахуванням залежностей
а1=Bcr+(h2 – a)+75=300+(1000 – 500)+75=875 мм
Приймаємо а1=1000 мм (кратне 250 мм).
Ширина нижньої частини колони:
h1=а+a1=500+1000=1500 мм.
Приймаємо, що колони жорстко з’єднуються з фундаментами.
Дата добавления: 09.11.2012

ДП 85. Дипломний проект - П’ятнадцятиповерховий житловий будинок з підземним паркингом в м.Київ | AutoCad

Вступ
Розділ 1.
Порівняння варіантів
1.1. Описання прийнятих до розгляду варіантів
1.2. Кошторисна собівартість збірних конструкцій у споруді
1.3. Капітальні вкладення в базу
1.4. Річні експлуатаційні витрати
1.5. Приведені витрати
1.6. Аналіз і обґрунтування вибору для подальшого розроблення
Розділ 2.
Архітектурно будівельний
2.1. Загальна характеристика ділянки
2.1.1. Географічне положення ділянки.Кліматичні умови
2.1.2. Транспортні зв’язки.Екологічний вплив на оточуюче середовище
2.1.3. Інженерно-геологічні та гідрогеологічні умови ділянки
2.2. Генеральний план
2.2.1. Обгрунтування прийнятого рішення
2.2.2. Вертикальне планування
2.2.3. Заходи з дотримання санітарних та протипожежних норм охорони навколишнього середовища
2.2.4. Техніко-економічні показники генерального плану
2.3. Об’ємно-планувальне рішення
2.3.1. Характеристика функціонального процессу
2.3.2. Описання прийнятого рішення та його обгрунтувння
2.3.3. Техніко-економічні показники об’ємно-планувального рішення
2.4. Конструктивні рішення
2.4.1. Несучі конструкції.Обгрунтування їх вибору
2.4.2. Огороджуючі конструкції
2.4.3. Теплотехнічний розрахунок стін
2.4.4. Матеріали для зведення будівлі,обгрунтування їх вибору
2.5. Архітектурно-художнє рішення будівлі
2.6. Санітарно-технічне обладнання
2.6.1. Опалення
2.6.2. Електропостачання
2.6.3. Водопостачання та водовідведення
2.6.4. Вентиляція
2.6. Заходи з промсанітарії та охорони праці
Розділ 3.
Розрахунково-конструктивний
3.1. Розрахунок та конструювання збірної залізобетонної плити з круглими пустотами
3.1.1. Матеріали для плити
3.1.2. Навантаження
3.1.3. Встановлення розрахункових розмірів плити і визначення зусиль від зовнішніх навантажень
3.1.4. Розрахунок міцності нормального перерізу
3.1.5. Розрахунок міцності перерізів, нахилених до поздовжньої осі панелі
3.1.6. Розрахунок плити за розкриттям тріщин, нормальних до поздовжньої осі
3.1.7. Розрахунок плити за розкриттям тріщин, похилих до поздовжньої осі
3.1.8. Розрахунок прогину плити
3.1.9. Перевірка панелі на монтажні навантаження
3.2. Розрахунок колони
3.2.1. Навантаження на колону
3.2.2. Розрахунок міцності перерізів колони
Розділ 4.
Основи та фундаменти
4.1. Оцінка інженерно-геологічних умов будівництва
4.2. Визначення навантажень на фундаменти
4.3. Визначення несучої здатності бурової палі
4.3.1. Визначення несучої здатності висячої бурової палі під колону
Розділ 5.
Технологія і організація будівництва
5.1.1. Опис виконання основних технологічних процесів
5.1.2. Благоустрій території
5.1.3. Охорона праці під час виконання робіт
5.1.4. Методи виконання робіт в зимній період
5.2. Визначення трудомісткості та термінів будівництва
5.2.1. Визначення обсягів загально будівельних робіт
5.2.2. Визначення трудомісткості робіт
5.3. Вибір монтажних механізмів для ведення робіт
5.4. Технологічна карта на монтаж сходових маршів і площадок
5.4.1. Область застосування
5.4.2. Організація та технологія будівельного процесу
5.4.3. Техніко-економічні показники
5.4.4. Матеріально-технічні ресурси
5.5. Визначення терміну будівництва
5.5.1. Сітковий графік будівництва
5.5.2. Карточка-визначник робіт і ресерсів сіткового графіка
5.5.3. Техніко-економічні показники сіткового графіку
5.6. Будівельний генеральний план
5.6.1. Розрахунок складських приміщень і ділянок
5.6.2. Розрахунок площ складів
5.6.3. Розрахунок адміністративно-побутових будівель
5.6.4. Розрахунок тимчасового водозабезпечення об’єкту будівництва
5.6.5. Розрахунок тимчасового електрозабезпечення об’єкту будівництва
5.6.6. Техніко-економічні показники буд генплану
5.7. Охорона праці та техніка безпеки
Розділ 7.
Наукова робота
Наукова робота
Розділ 8.
Охорона праці
8.1. Техніка безпеки та пожежна безпека на будівельному майданчику
8.2. Заходи з техніки безпеки
8.2.1. Техніка безпеки при бурових роботах
8.2.2. Заходи безпеки при гідроізоляційних роботах
8.2.3. Заходи з техніки безпеки при виконанні електрозварювальних робіт
8.2.4. Заходи з техніки безпеки при виконанні кам’яних робіт
8.2.5. Заходи з техніки безпеки при виконанні монтажних робіт
8.2.6. Заходи з техніки безпеки при виконанні бетонних та залізобетонних робіт
8.3. Виробнича санітарія
8.4. Захисне заземлення
Література



Техніко-економічні показники об’ємно-планувального рішення.
Дані наведені для багатоповерхового житлового будинку в осях 1/0-14:
1. Площа паркингу в цокольному поверсі………………………1003,89
2. Площа підсобних приміщень для персоналу паркингу..........210,01
3. Площа приміщень першого поверху для обслуговуючого персоналу будинку............344,16
4. Площа технічних поверхів...........526,26
5. Житлова площа квартир типового поверху..............................274,73
6. Загальна житлова площа квартир....................4120,95
7. Будівельний об’єм..........................94358

Конструктивна схема прийнята змішана з поперечними та поздовжніми несучими стінами,на які будуть опиратися плити перекриття.
-Фундаменти:
Прийнято рішення влаштування фундаментів із буроін’єкційних паль Ø520 з важкого мілкозернистого бетону групи А класу В25 по міцності.Це обумовлено тим,що поруч стоять будівлі і при влаштуванні таких паль на них не будуть впливати ніякі навантаження.
–Перекриття:
Перекриття будинку здійснюється за допомогою залізобетонних пустотних плит, а саме ПК 63.12; ПК 54.12; ПК 57.12; ПК 48.12; ПК 48.15; ПК 30.5.6.,а також присутні монолітні ділянки.
Вмісцях де були пробиті отвори не порушуючи отворів їх потрібно заармувати. Плити з’єднуються між собою та стінами за допомогою арматурної сталі так званих анкерів які вмуровуються в стіни.
–Покриття:
Покриття здійснюється залізобетонними, пустотілими плитами, які опираються на ригелі. В місцях де залишаються пройми використовують монолітні ділянки.
–Вертикальні несучі конструкції:
Вибір вертикальних несучих конструкцій зумовлений забезпеченням несучої здатності і жорсткості будівлі,можливістю вільного планування приміщень,а також покращення естетичного вигляду інтер’єру.В якості вертикальної несучої конструкції використовується звичайна цегла.Товщина стіни прийнята 510мм,прив’язка до осі 200мм, внутрішніх–380мм.В цокольному поверсі присутні монолітні колони перерізом 400×400мм.Для забезпечення жорсткості будівлі виконуються монолітні пояси–4 шт.Висота монолітного поясу прийнята 0,3м.Монолітні пояси розташовані на відмітках
1 пояс–3,000;2 пояс–18,000;3 пояс–33,000;4 пояс–48,000.
Дата добавления: 24.11.2012
ДП 86. Дипломный проект - Відновлення деталей передньої підвіски ВАЗ-2101 | AutoCad

ВСТУП
1 АНАЛІЗ УМОВ РОБОТИ ДЕТАЛЕЙ ПЕРЕДНЬОЇ ПІДВІСКИ АВТОМОБІЛЯ ВАЗ-2101
1.1 Призначення сферичних шарнірів
1.2 Визначення стану деталей передньої підвіски
1.3 Умови роботи сферичних шарнірів та фактори, які впливають на швидкість зносу вузла
1.4 Огляд основних методів підвищення зносостійкості сферичної поверхні кульових шарнірів
1.4.1 Технологічні методи
1.4.2 Конструкційні методи
1.4.3 Розрахунково-експериментальні методи (методи оптимізації параметрів)
2 ТЕХНОЛОГІЧНА ЧАСТИНА
2.1 Розробка технологічного процесу розбирання вузла при ремонті
2.1.1 Загальний огляд, перевірка кульових шарнірів
2.1.2 Технологічний процес розбирання тяг і кульових шарнірів рульового приводу
2.2 Вибір та обгрунтування технології відновлення сферичної частини пальця передньої підвіски
2.2.1 Вибір способу усунення дефекту за конструкторсько- технологічними характеристиками
2.2.2 Вибір способу усунення дефекту за показниками фізико- механічних властивостей
2.2.3 Вибір способу усунення дефекту за іншими характеристиками
2.2.4 Обгрунтування вибраного методу
2.3 Опис способу відновлення пальця кульового плазменно- дуговим напиленням
2.3.1 Технологічна характеристика методу плазмового напилення
2.3.2 Вимоги до процесу напилення з точки зору підвищення адгезійної міцності та якості покриття
2.3.3 Властивості напилюваних матеріалів
2.3.4 Вибір обладнання для відновленняї
2.4 Технологічний процес відновлення пальця кульового
2.4.1 Миття та очищення пальця кульового
2.4.2 Підготовка пальця кульового під напилення
2.4.3 Використання SQL для визначення оптимального режиму напилення пальця кульового
2.4.4 Напилення пальця кульового
2.5 Вибір обладнання для механічної обробки
2.5.1 Призначення параметрів механічної обробки деталей після нанесення покриття
2.6 Технічний контроль покриття
2.7 Хіміко-термічна обробка відновленого пальця кульового
2.8 Математичне моделювання ТП у середовищі Mathcad (лінійна та поліноміальна апроксимація за методом найменших квадратів)
2.8.1 Визначення параметрів лінійного рівняння a і b для набору вихідних даних xi, yi, розміщених у масиві DATA
2.8.2 Апроксимація степенними поліномами
2.8.3 Функція лінійного згладжування linfit
2.8.4 Застосування лінійної інтерполяції даних зносостійкості
3 КОНСТРУКТОРСЬКА ЧАСТИНА
3.1 Огляд існуючих підшипників, які застосовуються в кульових шарнірах
3.2 Розробка конструкції комбінованого (кульового) підшипника
3.3 Розрахунок кульових поверхонь
3.4 Розрахунок тиску в умовах роботи рульової тяги
3.5 Розробка технологічного процесу виготовлення комбінованого підшипника
3.5.1 Вибір матеріалу вкладиша та кулі підшипника
3.5.2 Визначення контактного тиску на сухар
3.5.3 Обгрунтування вибору конструкції вузла тертя
3.5.4 Технологічний процес виготовлення кульового комбінованого підшипника
4 РОЗРАХУНКОВО-ЕКСПЕРИМЕНТАЛЬНА (ДОСЛІДНИЦЬКА) ЧАСТИНА
4.1 Розрахунково-експериментальні методи (методи оптимізації параметрів)
4.2 Мета та задачі випробувань
4.3 Розробка методики модельних випробувань
4.4 Результати випробувань та методика обробки результатів
4.5 Визначення коефіцієнту Kw для двох варіантів випробувань
4.6 Розрахунок зносу сферичної частини кульового підшипника
5 ОХОРОНА ПРАЦІ ТА АНАЛІЗ НЕБЕЗПЕЧНИХ ФАКТОРІВ
5.1. Аналіз умов праці
5.2. Загальні положення
5.2.1. Захист від шуму й вібрації
5.2.2. Пожежна безпека
5.2.3. Електробезпечність
5.2.4. Освітлення виробничого приміщення
5.2.5. Оздоровлення повітряного середовища
5.3. Техніка безпеки на дільниці
6 ЕКОНОМІЧНИЙ РОЗРАХУНОК
ВИСНОВКИ
РЕКОМЕНДАЦІЇ
ЛІТЕРАТУРА
ДОДАТКИ


Розглянуто призначення сферичних шарнірів передньої підвіски автомобіля ВАЗ-2101 та їх елементів. Описані умови роботи сферичних шарнірів та фактори, які впливають на швидкість зносу вузла. Проведений огляд основних методів підвищення зносостійкості сферичної поверхні кульових шарнірів:
- технологічний (плазменно-дугове напилення з наступною цементацією пальця кульової опори); - конструктивний (виготовлення комбінованого підшипника);
- розрахунково-експериментальний (заміна мастила Циатім–205 на Циатім-205 + ПТФЕ-ЗОП + присадка універсальна „Акорокс").
Розроблений технологічний процес розбирання вузла при ремонті. Вибрано та обгрунтувано технологію відновлення сферичної частини пальця передньої підвіски. Описаний спосіб відновлення пальця кульового плазменно-дуговим напиленням і розроблений відповідний технологічний процес. Для визначення оптимального режиму напилення пальця використано мову SQL. Вибрано обладнання і призначені параметри механічної обробки пальця після нанесення покриття.
Описана хіміко-термічна обробка відновленого плазменно-дуговим напиленням пальця кульового, наведена схема технологічного процесу. Проведено математичне моделювання у середовищі Mathcad (лінійна та поліноміальна апроксимація за методом найменших квадратів).
У конструкторській частині проведено огляд існуючих підшипників, які застосовуються в кульових шарнірах, і розроблена конструкція комбінованого підшипника. Суть його виготовлення полягає у заміні тертя ковзання тертям кочення - у прошарок між сферичною поверхнею пальця та поверхнями вкладишів встановлені тіла обертання. Вказана конструкція замінює тертя ковзання сферичної частини пальця по вкладишу тертям кочення кульок, зменшуючи таким чином знос обох деталей.
Наведена методика розрахунку сферичних поверхонь і проведений розрахунок тиску в умовах роботи рульової тяги. Розроблений технологічний процес виготовлення комбінованого підшипника.
Охарактеризовані розрахунково-експериментальні методи підвищення зносостійкості сферичної поверхні кульових шарнірів і розроблена методика модельних випробувань. Розрахований знос сферичної частини кульового підшипника для двох зразків мастила:
- Циатім-205;
- Циатім -205 + ПТФЕ-ЗОП + присадка універсальна „Акорокс".
Встановлено, що застосування мастила з присадками замість мастила без присадок забезпечує підвищення зносостійкості у 15,8 разів.
Дата добавления: 27.11.2012
КП 87. Дипломний проект - Розробка метальника грунту (ДСНП) до бульдозера ДЗ-42Г на базі гусеничного трактора загального призначення ВТ-90 | Компас

1. Огляд технічних рішень.
2. Розрахунки продуктивності.
3. Технологічна схема роботи.
4. Бульдозер з метальником.
5. Робоче обладнання з метальником.
6. Метальник.
7. Деталювання.
8. Деталювання.

ЗМІСТ
ВСТУП
1. АНАЛІЗ ІСНУЮЧИХ ТЕХНІЧНИХ РІШЕНЬ РОБОЧИХ ОРГАНІВ БУЛЬДОЗЕРІВ
1.1.Організація та проведення патентного пошуку
1.2.Аналіз технічних рішень бульдозерних робочих органів
2. РОЗРАХУНОК ОСНОВНИХ ПАРАМЕТРІВ ПРОЕКТОВАНОГО БУЛЬДОЗЕРА
2.1. Вихідні дані
2.2. Вибір габаритних розмірів відвалу
2.3. Тяговий розрахунок бульдозера
2.4. Розрахунок потужності приводу метальника ґрунту
2.5. Розрахунок параметрів метального обладнання
2.6. Розрахунок продуктивності бульдозера
2.6.1. Розрахунок продуктивності існуючого бульдозер
2.6.2. Розрахунок продуктивності проектованого бульдозера
3. РОЗРАХУНОК ГІДРАВЛІЧНОЇ СИСТЕМИ РОБОЧОГО ОБЛАДНАННЯ
3.1. Розрахунок гідравлічної системи робочого обладнання
3.1.1. Визначення подачі рідини
3.1.2. Визначення діаметрів трубопроводів
4. МІЦНІСНІ РОЗРАХУНКИ ДЕТАЛЕЙ ТА З’ЄДНАНЬ
4.1. Визначення діючих сил на кромку відвалу
4.2. Розрахунок рами бульдозера
4.2.1.Вибір розрахункової схеми рами бульдозера
4.2.2. Визначення зусиль у ланках рами бульдозера
4.2.3 Визначення геометричних характеристик рами
4.3. Розрахунок вала метальника
4.4. Розрахунок шпонкового з’єднання вала метальника
4.5. Розрахунок лопаток метальника
5. ТЕХНІЧНА ТА ВИРОБНИЧА ЕКСПЛУАТАЦІЯ БУЛЬДОЗЕРА
5.1. Технічна експлуатація бульдозера
5.2. Виробнича експлуатація бульдозера
6. ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ
6.1. Аналіз умов праці машиніста
6.2. Оглядовість робочого майданчика і робочих органів
6.3. Захист машиніста від шуму
6.4. Опалення та охолодження кабіни
6.5 Світлотехнічні прилади
6.6 Техніка безпеки при роботі бульдозера
6.7 Пожежна безпека
6.8 Охорона праці при технічному обслуговуванні та ремонті тракторів
7. ТЕХНІКО – ЕКОНОМІЧНИЙ РОЗРАХУНОК
7.1. Вихідні дані
7.2. Розрахунок капітальних витрат
7.3. Розрахунок ТЕП проекту
ПЕРЕЛІК ПОСИЛАНЬ

Найбільш трудомісткою частиною будівництва є земляні роботи, причому їх обсяги зростають великими темпами. При цьому на долю бульдозерів припадає близько 32% усього обсягу земляних робіт у будівництві. Тому існує необхідність підвищення рівня їх комплексної механізації та зокрема підвищення продуктивності бульдозерів.
Пропонується конструкція додаткового обладнання, а саме метальника ґрунту, який дозволить інтенсифікувати робочий процес бульдозера, підвищити ефективність його використання та продуктивність.
Метальник з гідроприводом кріпиться до тильної частини одного з кінців відвалу. Поворот метальника в робоче та неробоче положення здійснюється гідроциліндром, також встановленим на тильній стороні відвалу.






















































































































































Дата добавления: 28.11.2012
ДП 88. Креслення (училище) - Одноповерховий 4 - х кімнатний котедж з мансардою i повіткою 19,64 х 9,00 м в Волинській області | AutoCad

Ґрунти : відносяться до ґрунтів І-ї категорії, термін стискання яких завершується з кінцем будівництва.
Температура : найбільш холодної п’ятиденки -20° С
Снігове навантаження : 50 кг/м2
Глибина промерзання ґрунту : 90 см
Вітрове навантаження : 38 кг/м2
Конструктивна схема: без каркасна з поздовжніми несучими стінами.
Висота поверху: 3,0 м.
Ступінь вогнестійкості: ІІ.
Ступінь довговічності: ІІ.
Фундаменти: збірні залізобетонні (суцільна монолітна подушка).
Стіни: цегляні:
- зовнішні 480 мм ( з зовнішнім утепленням пінополістеро¬льними плитами марки ПСБ-25);
- внутрішні 380 мм.
Перегородки: цегляні 120 мм
Перекриття: збірне, залізобетонні пустотні плити товщиною 220мм, мансарди виконується по дерев’яних балках.
Покрівля: скатна, покриття виконується з бітумної черепиці.
Підлоги: паркетні, із керамічної плитки.
Двері: дерев’яні фільончасті (спецзамовлення).
Вікна: металопластикові з склопакетами (спецзамовлення).
Внутрішнє оздоблення: поліпшена штукатурка, шпаклівка, фарбування водо- емульсійними фарбами, оздоблення керамічною плиткою.
Зовнішнє оздоблення :
- стіни цоколя облицьовуються цокольною плиткою;
- стіни І-го поверху та мансарди – декоративна штукатурка Ceresit CT35.

Техніко-економічні показники
1 Будівельний об’єм... 736,4 м
2 Площа забудови... 147,9 м
3 Загальна площа... 187,5 м
4 Житлова площа... 43,5 м
 
Дата добавления: 30.11.2012
ДП 89. Креслення (училище) - Двоповерховий iндивідуальний житловий будинок з верандою - оранжереєю 11,4 х 13,5 м в Волинській області | AutoCad

Грунти : відносяться до ІІ-гої категорії, термін стиснення яких завершується з кінцем будівництва.
Температура : найбільш холодної п’ятиденки -20 С
Снігове навантаження : 124 кгс/м
Глибина промерзання грунту : 90 см
Вітрове навантаження : 48 кгс/м

Характеристика будівлі
Конструктивна схема : безкаркасна з повздовжніми та поперечними несучими стінами.
Висота поверху : 3,0 м
Розміри будівлі в осях : 11,400х13,500 м
Ступінь вогнестійкості : ІІІ
Ступінь довговічності : ІІІ
Фундаменти : монолітні стрічкові з.б.
Стіни: цегляні: зовнішні з цегли глиняної звичайної товщ. 250 з облицюванням лицевою цеглою ,,ФАГОТ” з утепленням в товщі стіни (утеплювач мін.вата - 100мм)загальна товщ. стіни сягає 510мм.
: внутрішні 380 мм.
Перегородки : цегляні 120 мм
Перекриття : перекриття 1-го та 2-го поверху - збірні з.б. плити с.1.141-1.
Покриття : скатне , похилі крокви із пиломатеріалів , поверх яких влаштовується покриття з керамічної черепиці ROBEN .
Підлога :з ламінату, із керамічної плитки по технології Ceresit.
Двері : дерев’яні фільончасті ( спецзамовлення ).
Вікна : дерев’яні (спецзамовлення).
Внутрішнє оздоблення : поліпшена штукатурка, шпатлівка, пофарбування водоемульсійними фарбами, облицювання керамічною плиткою.
Зовнішнє оздоблення : облицювання стін лицевою цеглою, декоративне тинькування окремих ділянок стін та цоколю.


1. Будівельний об’єм... 1462,5 м3
2. Площа забудови... 203,5м
3. Загальна площа... 224,1м
4. Житлова площа... 102,2м
5. Кількість поверхів... 2
Дата добавления: 02.12.2012
ДП 90. Дипломний проект - Ремонт зчеплення автомобіля М-2140 | AutoCad

ВСТУП
1 ОПИС ПРИЗНАЧЕННЯ ЗЧЕПЛЕННЯ АВТОМОБІЛЯ МОСКВИЧ 2140 Й УМОВ РОБОТИ ВИЖИМНОГО ПІДШИПНИКА
1.1 Зчеплення й приводи керування зчепленням
1.2 Призначення, загальна будова, основні функції зчеплення автомобіля Москвич-2140
1.3 Опис конструкції деталей пари тертя зчеплення автомобіля Москвич-2140 “корпус вижимного підшипника-вилка”
1.4 Характеристика матеріалів пари тертя підшипник-вилка
2 ВИЗНАЧЕННЯ УМОВ РОБОТИ ДЕТАЛЕЙ ПАРИ ТЕРТЯ “КОРПУС ВИЖИМНОГО ПІДШИПНИКА-ВИЛКА”
2.1 Загальні поняття про напрямні ковзання
2.2 Розрахунок тиску у контакті та швидкості ковзання
3 АНАЛІЗ ТЕХНІЧНИХ УМОВ НА ВІДНОВЛЕННЯ ПОВЕРХОНЬ КОРПУСУ ВИЖИМНОГО ПІДШИПНИКА ЗЧЕПЛЕННЯ Й МЕТОДИ ЇХ ЗАБЕЗПЕЧЕННЯ
3.1 Технічні умови на дефектацію і ремонт корпусу вижимного підшипника
3.2 Критерії вибору методів підвищення зносостійкості корпусу вижимного підшипника
3.2.1 Дефект №1 - знос шийок
4. АНАЛІЗ І ВИБІР МЕТОДУ ЗМІЦНЕННЯ КОРПУСУ ВИЖИМНОГО ПІДШИПНИКА ЗЧЕПЛЕННЯ
4.1 Вибір способів усунення дефекту №1 корпусу вижимного підшипника
4.2 Визначення оптимального способу усунення дефекту №1 корпусу вижимного підшипника
4.3 Опис способу відновлення корпусу вижимного підшипника холодним залізненням на асиметричному змінному струмі
4.3.1 Електроліти для нанесення залізних покриттів
4.3.2 Аноди для нанесення залізних покриттів
4.3.3 Переваги залізнення
4.4 Опис способу зміцнення корпусу вижимного підшипника іонним азотуванням
5 ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ПРОЦЕСУ ЕЛЕКТРОЛІТИЧНОГО ЗАЛІЗНЕННЯ ЗНОШЕНОГО ВИЖИМНОГО ПІДШИПНИКА ЗЧЕПЛЕННЯ
5.1 Опис способу відновлення вижимного підшипника зчеплення холодним залізненням на асиметричному змінному струмі
5.2 Властивості покрить, осаджених холодним залізненням на асиметричному змінному струмі
6 ЕКСПЕРИМЕНТАЛЬНІ ДОСЛІДЖЕННЯ ПРОЦЕСУ ІОННОГО АЗОТУВАННЯ НОВОГО ВИЖИМНОГО ПІДШИПНИКА ЗЧЕПЛЕННЯ
6.1 Кінетика процесу іонного азотування вижимного підшипника зчеплення
6.1.1 Азотний потенціал
6.1.2 Азотований шар
6.2 Опис способу відновлення деталей іонним азотуванням
6.3 Кінетика процесу іонного азотування СЧ
7 ДОСЛІДЖЕННЯ ЗНОСОСТІЙКОСТІ КОРПУСУ ВИЖИМНОГО ПІДШИПНИКА ЗЧЕПЛЕННЯ
7.1 Природа зносостійкості металів при контактному терті
7.2 Загальні поняття про зношування напрямних ковзання
7.3 Методи визначення зносу корпусу вижимного підшипника зчеплення автомобіля Москвич-2140
7.4 Порівняння матеріалів по зношуванню
7.5 Методика проведення досліджень
7.5.1 Установка і методика дослідження зносостійкості
7.5.2 Умови експерименту
7.5.3 Конструкція контрольного пристрою
7.6 Експериментальне визначення параметрів зношування
8 РОЗРОБКА ТЕХНОЛОГІЧНИХ ПРОЦЕСІВ
8.1 Розробка ТП електролітичного залізнення зношеного вижимного підшипника зчеплення
8.1.1 Ванни для нанесення електрохімічних покриттів
8.1.2 Контроль і регулювання температури розчинів
8.1.3 Регулювання щільності струму
8.1.4 Автоматичне регулювання кислотності електроліту
8.1.5 Апаратура для автоматичного регулювання рівня електроліту 8.2 Розробка ТП іонного азотування нового вижимного підшипника зчеплення
8.2.1 Причини нecтaбільнocті результатів традиційних процесів азотування
8.2.2 Устаткування іонного азотування серії “АР”
8.2.3 Комплектність установок
8.2.4 Розміщення і експлуатація установок на виробництві
8.2.5 Технічні характеристики установки ІПА моделі “АР-63”
8.2.6 Розробка технологічного процесу іонного азотування вижимного підшипника зчеплення
8.3 Розробка ТП механічної обробки вижимного підшипника зчеплення
8.3.1 Вибір методів підготовки поверхонь під відновлення (залізнення)
8.3.2 Розрахунок та вибір режимів обробки і відновлення поверхні
8.3.3 Механічна обробка після відновлення деталі
8.3.4 Нормування технологічного процесу
9 ОХОРОНА ПРАЦІ І ТЕХНІКА БЕЗПЕКИ
10 КОНОМІЧНА ЧАСТИНА
ВИСНОВКИ
РЕКОМЕНДАЦІЇ
ЛІТЕРАТУРА

ВИСНОВКИ
Описано призначення зчеплення автомобіля Москвич 2140 й умов роботи вижимного підшипника, конструкція та умови роботи деталей пари тертя “корпус вижимного підшипника-вилка”, розрахунок тиску у контакті та швидкості ковзання.
Проведено аналіз технічних умов на відновлення поверхонь корпусу вижимного підшипника зчеплення й методи їх забезпечення. аналіз і вибір методу його зміцнення. Описані спосіб зміцнення корпусу вижимного підшипника холодним залізненням на асиметричному змінному струмі та іонним азотуванням.
Наведені експериментальні дослідження процесу електролітичного залізнення зношеного вижимного підшипника зчеплення і процесу іонного азотування нового вижимного підшипника зчеплення.
Проведені дослідження зносостійкості корпусу вижимного підшипника зчеплення - установка і методика дослідження зносостійкості, умови експерименту, конструкція контрольного пристрою і експериментальне визначення параметрів зношування. Встановлено наступне підвищення зносостійкості: чавун СЧ20 /азотований чавун СЧ20 = 1,71 р., сталь 45 /азотований чавун СЧ20 = 1,43 р.
Розроблені технологічні процеси ектролітичного залізнення і механічної обробки зношеного вижимного підшипника зчеплення, іонного азотування нового вижимного підшипника зчеплення. У розділі охорони праці описані завдання і значення охорони праці і техніки безпеки на підприємствах машинобудування, виробнича санітарія і техніка безпеки на гальванічних дільницях
В економічній частині описана організація дільниці для електролітичного залізнення, визначення потрібної кількості устаткування, розрахунок кількості робітників, розрахунок площі виробничої дільниці, економіка виробництва. Проведено розрахунок економічного ефекту від упровадження електролітичного залізнення корпусу вижимного підшипника зчеплення автомобіля Москвич-2140 - термін окупності додаткових капіталовкладень становить 1,83 р.
Дата добавления: 14.12.2012

На страницу 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

© Rundex 1.2
 
Cloudim - онлайн консультант для сайта бесплатно.