Добавить проект
Прочитать правила
Платный доступ
Авторизация:
Информация


%207%20%20

Найдено совпадений - 35 за 1.00 сек.


КП 16. Курсовой проект - Проектирование городской улицы в г. Белгород | АutoCad
ВВЕДЕНИЕ 2
1 Общая характеристика района проектирования дороги 3
1.1 Климатические характеристика района проектирования 3
1.2 Рельеф местности 5
2 Обоснование технических нормативов проектируемой автомобильной дороги 5
3 Определение технических характеристик проектируемых улиц 7
4 Проектирование поперечных профилей основной и пересекаемой улиц, определении ширины улиц в "красных линиях" 13
5 Проектирование плана и продольного профиля основной и пересекаемой улиц 14
5.1 Проектирование плана улиц 14
5.2 Проектирование продольного профиля улиц 15
6 Разработка вертикальной планировки пересечения 17
7 Определение объёмов земляных работ на перекрёстке методом "картограмм" 19
8 Назначение конструкции дорожной одежды 24
ЗАКЛЮЧЕНИЕ 35
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ 36

Исходные данные для проектирования
1. Топографический план участка города в горизонталях с планом улично-дорожной сети в масштабе 1:10 000 (приложение 1).
2. Район проектирование – г. Белгород, Белгородская область.
3. Данные о грунтовых условиях:




6. Основная улица Прохладная.
7. Пересекаемая улица Ненастная.
8. Состав транспортного потока и интенсивность движения:








10. Интенсивность движения пешеходов 3,0 тыс. чел/ч.
11. Инженерные сети: водопровод, теплоснабжение, кабели (слаботочные, сильных токов, осветительные).
12. Тип покрытия дорожной одежды проезжей части проектируемой улицы монолитный цементобетон.

ЗАКЛЮЧЕНИЕ
В данной курсовой работе на тему «Проектирование городской улицы» была запроектирована магистральная улица непрерывного движения.
Был выбран оптимальное размещение автомобильной дороги исходя безопасности движения и экономического соображения, запроектирована вертикальная планировка и выполнен расчет объема земляного полотна методом картограмм. Была подобрана конструкция жесткой дорожной одежды с учетом сроком службы на 25 лет.
Дата добавления: 17.06.2019
КП 17. Курсовой проект - Проектирование районной понизительной подстанции 220/35/10 кВ | Компас

Введение 6
1 Обработка графиков нагрузок 7
2 Выбор числа и мощности силовых трансформаторов 12
3 Расчет токов короткого замыкания 15
4 Выбор главной схемы соединений ППС 18
5 Выбор измерительных трансформаторов 26
5.1 Выбор измерительных трансформаторов тока 26
5.2 Выбор измерительных трансформаторов напряжения 29
5.3 Выбор предохранителей в цепи трансформатора напряжения 31
6 Выбор и проверка токоведущих частей в схемах РУ подстанций 33
6.1.1 Выбор токоведущих частей на стороне 220 кВ 33
6.1.2 Выбор сборной шины 220 кВ 34
6.2.1 Выбор сборной шины 10 кВ 35
6.2.2 Выбор провода на отходящих линиях 10 кВ 37
6.3.1 Выбор токоведущих частей на стороне 35 кВ 37
6.3.2 Выбор сборной шины 35 кВ 38
6.3.3 Выбор провода на отходящих линиях 35 кВ 40
7 Выбор защитного и изоляционного оборудования 41
7.1 Выбор опорных изоляторов 41
7.2 Выбор проходных изоляторов 42
8 Выбор трансформаторов собственных нужд 44
Заключение 47
Список используемых источников 50

Целью данного курсового проекта является Проектирование понизительной подстанции 220/35/10 кВ .
Каждая локальная сеть должна отвечать таким же требованиям, каким отвечает вся электроэнергетическая система. Основными требованиями являются надежность, экономичность, безопасность, удобство эксплуатации, обеспечение надлежащего качества электроэнергии, установленных в ГОСТ 13109-97, и возможность дальнейшего развития.
В ходе курсового проекта необходимо рассчитать данные для суточных и годовых графиков нагрузок на стороне 35 кВ и 10 кВ, затем построить годовые графики нагрузок. Далее на основании заданной максимальной мощности выбрать трансформаторы, для которых нужно произвести все необходимые расчеты для проверки ( напряжения к.з., реактивные мощности к.з., потери на трансформаторе и коэффициент загрузки). Затем построить схему замещения, упростить ее и на ее основании посчитать токи короткого замыкания. Далее необходимо выбрать и построить главную схему соединений ППС, для которой производится выбор коммутационного оборудования. Потом выбрать и рассчитать аппаратуру, токоведущие части и защитное и изоляционное оборудование. В заключении выбрать трансформатор собственных нужд.
 


Было получено задание - спроектировать районную понизительную подстанцию 220/35/10 кВ, которая будет отвечать всем параметрам качества электропередачи, установленным в ГОСТ 13109-97. В ходе выполнения по-ставленной задачи были рассчитаны и построены годовые графики электрических нагрузок на среднем и низшем напряжении. Затем был произведен расчет данных для выбора силового трансформатора. Был выбран силовой трансформатор ТДТН 25000/220, для которого были рассчитаны напряжения короткого замыкания, реактивная и активные мощности короткого замыкания, на каждой из сторон обмоток, коэффициент загрузки и потери на трансформаторе, согласно которым, выбранный трансформатор подошел для установки в РПП 220/35/10 кВ.
Далее производился выбор главной схемы электрических соединений подстанции. Была создана и в последствии упрощена схема замещения для расчетов токов короткого замыкания, для которой были произведены рас-четы ЭДС и реактивных сопротивлений на всех сторонах обмоток. Затем были рассчитаны: базисные токи, токи короткого замыкания и ударные то-ки на каждой из сторон обмоток.
Были произведены расчеты рабочих токов, максимальных рабочих токов и тепловых импульсов на всех сторонах обмоток, затем была состав-лена схема электрических соединений для подстанции типа 220-4H ( Два блока с выключателями и неавтоматической перемычкой со стороны линий ), для которой были выбраны и проверены: выключатели (ВГТ-220 на ли-нии 220 кВ, ВГБЭ-35/УХЛ1 на линии 35 кВ, ВВУ-10-26/1600 на линии 10 кВ, ВВ/TEL-35-12,5/630УХЛ1 на фидерах 35 кВ, ВВ/TEL-35-12,5/630УХЛ1 на фидерах 10 кВ), разъединители (РНДЗ-1-220/1000УХЛ1 на напряжении 220 кВ, РНДЗ.1-35I/1000УХЛ на напряжении 35 кВ, РВЗ-10/2500 на напря-жение 10 кВ), нелинейные ограничители перенапряжений (ОПН-220/176/10/550 на линии 220 кВ, ОПН/TEL-35/40,5УХЛ1 на фидерах 35 кВ, ОПН/TEL 10/10,5УХЛ1 на фидерах 10 кВ).
Для преобразования значений тока и напряжения, пригодных для из-мерения были выбраны и проверены на электродинамическую и термиче-скую стойкость трансформаторы тока (ТФМЗ-220Б-3У1 на линии 220 кВ, ТОЛ-35-600 на линии и фидерах 35 кВ, ТОЛ-10 М2 на линии 10 кВ и ТПОЛ-10-600/5 на фидерах 10 кВ), трансформаторы напряжения (3НОГ-220-УХЛ на напряжение 220 кВ, 3НОМ-35-65У1 на линии и фидерах 35 кВ, НТМИ 10-66-У на линии и фидерах 10 кВ). Для защиты измерительных трансформаторов на стороне 10 и 35 кВ были выбраны (по номинальному напряжению установки, номинальному длительному току плавкой вставки и предельному отключаемому току) плавкие предохранители ПКТ 101-10-2-31,5У3 и ПКТ 101-35-2-8У1.
Далее был произведен выбор и проверка токоведущих частей в схе-мах распределительных устройств подстанции, согласно которого на сто-роне 220 кВ были выбраны: токоведущий кабель АС 240/32(по допусти-мой плотности тока), сборная шина из алюминиевых труб с наружным и внутренним диаметром равным 16/13 мм и допустимым длительным током 2070 А; На стороне 35 кВ были выбраны: жесткие шины из алюминиевых труб с наружным и внутренним диаметром равным 35/25 мм и допустимым током 640 А, кабели на отходящих линиях (по допустимой плотности тока) АС 400/22 и допустимым током 830 А; На стороне 10 кВ были выбраны: сборные алюминиевые однополосные шины 120 на 10 мм, с допустимым длительным током 2070 А, уложенные плашмя, т.к. это увеличивает длину пролета и дает экономию в количестве изоляторов, кабели на отходящих линиях марки АС 240/32 (по экономической плотности тока).
Были выбраны (по номинальному напряжению установки и допусти-мой нагрузке) опорные изоляторы ИО 35/3,75 на напряжение 35 кВ с минимальной разрушающей силой 3,75 кН, ИО -10/4 на напряжение 10 кВ с минимальной разрушающей силой 4 кН. Также были выбраны (по номинальному напряжению и току нагрузки и по допустимой нагрузке) проходные изоляторы ИП-35/400-7,5УХЛ2 с номинальным током 400 А и разрушающей силой 7,5 кН и ИП-10/630-7,5 с номинальным током 630 А и разрушающей силой 7,5 кН.
В заключении были выбраны два трансформатора собственных нужд ТМ-250-10/0,4У1 и плавкие предохранители ПКТ 101-10-20-31,5У3 с кварцевым наполнителем для гашения дуги в умеренном климате, для защиты электрооборудования системы ТСН.
Таким образом, спроектирована районная понизительная подстанция 220/35/10 кВ, отвечающая условиям нормального функционирования и со-ответствующая ГОСТ 13109-97.
Дата добавления: 25.09.2019
КП 18. Курсовой проект - Бассейн 69 х 30 м в г. Красноярск | AutoCad

Реферат
Введение
Общая характеристика площадки строительства
Схема планировочной организации земельного участка
Технологические решения
Объемно-планировочные решения
Конструктивные решения
Инженерное оборудование здания
Противопожарная безопасность
Технологические решения пожарной безопасности
Мероприятия для обеспечения маломобильных групп населения
Теплотехнический расчет наружных ограждающих конструкций
Заключение
Список литературы

Содержание графической части
Лист 1.Схема планировочной организации земельного участка, ситуационная схема
Лист 2.План на отметке 0,000
Лист 3.План на отметке +3,300
Лист 4.План на отметке +6,600
Лист 5.Разрез 1-1, Разрез 2-2
Лист 6.Фасад 1-14, Е-А
Лист 7.План фундамента, развертка
Лист 8.Разрез фундамента 1-1, 2-2, узел 1,2,3.

ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЯ
1. Площадь застройки 2070 м2
2. Площадь территории 12000 м2
3. Площадь твердых покрытий 9570 м2
4. Площадь озеленения 360 м2
5. Процент застройки 17%
6. Общий объем здания 30840 м3

Здание бассейна имеет три этажа, высота одного этажа - 3.00 м.

Конструктивная схема здания – бескаркасная. Несущими конструкциями здания являются продольные и поперечные несущие стены. Несущая стена дома принимает на себя нагрузку, идущую от других конструктивных частей здания – перекрытий и крыш, и передает ее вместе с собственным весом фундаменту. Пространственная жесткость бескаркасных зданий обеспечивается несущими наружными и внутренними поперечными стенами, в том числе стенами лестничных клеток, связанными с наружными про-дольными стенами, а также междуэтажными перекрытиями, связывающими стены и разделяющими их по высоте здания на отдельные ярусы.
Под здание бассейна запроектирован ленточный сборный фундамент выполненный из железобетонных фундаментных подушек и бетонных фундаментных блоков.
Наружные стены выполнены из кирпича. Общая толщина стены составляет 640мм.
Покрытие-сборные железобетонные ребристые плиты 6000х1500х300мм (ГОСТ21506-2013) укла-дываются по сборным железобетонным, предварительно напряженным двускатным балкам серия ПК-01-115 длиной 9000мм и фермам (ГОСТ20213-89) длиной 18000мм.
Кровля рулонная, выполненная из Петрофлекса. Водосток организованный внутренний.
Дата добавления: 30.10.2019
КП 19. Курсовой проект - Разработка системы отопления жилого дома в г. Томск | AutoCad

1. Исходные данные
2. Описание схемного решения системы отопления
3. Гидравлический расчет системы отопления
4. Подбор отопительных приборов
Библиографический список

Система поквартирного отопления здания присоединена к тепловым сетям по зависимой схеме с автоматическим регулированием параметров теплоносителя в ИТП.
Система отопления – двухтрубная, с нижней разводкой магистралей. Магистральные вертикальные стояки проложены на лестничных клетках. На каждом этаже предусмотрены монтажные шкафы, в которых размещаются распределительные поэтажные коллекторы с отводящими трубопроводами для каждой квартиры, запорная арматура, фильтры, балансировочные клапаны, приборы учета теплоты.
Трубы в пределах квартиры прокладываются в конструкции пола или в специальных плинтусах – коробах. Присоединение отопительных приборов – боковое одностороннее.
Для регулирования теплового потока в помещениях у отопительных приборов устанавливаются автоматические терморегуляторы, обеспечивающие поддержание заданной температуры в каждом помещении.
Отопительные приборы шахт лестничных клеток размещены на первом этаже, а на лестничных площадках (перед лифтами), разделенных на отсеки, — на каждом этаже. Отопительные приборы на лестничной клетке присоединять к отдельным стоякам систем отопления.

Расчетные параметры теплоносителя
Расчетная температура подающего теплоносителя tг = 85 0С;
Расчетная температура обратного теплоносителя tо = 65 0С;
Располагаемый перепад давлений в тепловой сети Рр , 50кПа

Расчетные тепловые нагрузки отапливаемых помещений:



Дата добавления: 22.02.2020



КП 20. Курсовой проект - Районная понизительная подстанция 35/10 кВ | Компас

ВВЕДЕНИЕ 9
1 КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ПРОЕКТИРОВАНИЯ 10
2 ОБРАБОТКА ГРАФИКОВ НАГРУЗКИ 12
3 ВЫБОР ЧИСЛА И МОЩНОСТИ СИЛОВЫХ ТРАНСФОРМАТОРОВ 16
4 ВЫБОР ГЛАВНОЙ СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ ПОДСТАНЦИИ 19
5 РАСЧЕТ КОРОТКОГО ЗАМЫКАНИЯ 21
5.1 Расчёт короткого замыкания на шинах 35 кВ 21
5.2 Расчёт короткого замыкания на шинах 10 кВ 27
6 ВЫБОР ОСНОВНОГО ЭЛЕКТРООБОРУДОВАНИЯ И ТОКОВЕДУЩИХ ЧАСТЕЙ 30
6.1 Выбор шин 30
6.1 Выбор сборных шин на низшем напряжении 30
6.2 Выбор гибких шин на высшем напряжении 32
6.3 Выбор высоковольтных выключателей 34
6.3.1 Выбор высоковольтных выключателей на высшем напряжении 34
6.3.2 Выбор высоковольтных выключателей на низшем напряжении 36
6.3.3 Выбор высоковольтных выключателей на отходящих фидерах 37
6.4 Выбор разъединителей 39
6.4.1 Выбор разъединителей на высшем напряжении 39
6.5 Выбор трансформаторов тока 40
6.5.1 Выбор трансформаторов тока встроенных в силовые трансформаторы 40
6.5.2 Выбор трансформатора тока, расположенного на РУ ВН 40
6.5.3 Выбор трансформаторов тока, расположенных на вводах 10 кВ 42
6.5.4 Выбор трансформаторов тока, расположенных рядом с секционными выключателями на сборных шинах низшего напряжения 45
6.5.5 Выбор трансформаторов тока, расположенных на отходящих линиях 47
6.6 Выбор трансформаторов напряжения 50
6.6.1 Выбор трансформаторов напряжения на стороне 10 кВ 50
6.7Выбор предохранителей 51
6.8 Выбор ограничителей перенапряжения 52
7 ВЫБОР РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ 54
7.1 Выбор релейной защиты 54
7.2 Автоматика подстанции 55
7.2.1 Автоматическое включение резервного питания и оборудования (АВР) 55
7.2.2 Автоматическое повторное включение (АПВ) на отходящих фидерах 57
8 ВЫБОР КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ 59
9 ВЫБОР ОПЕРАТИВНОГО ТОКА И ИСТОЧНИКОВ ПИТАНИЯ 60
10 СОБСТВЕННЫЕ НУЖДЫ ПОДСТАНЦИИ 61
11 РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ НА ПОДСТАНЦИИ 63
12 ВЫБОР КОНСТРУКЦИИ РАСПРЕДУСТРОЙСТВ 64
ЗАКЛЮЧЕНИЕ 65
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 66

Проектируемая понизительная подстанция 35/10кВ служит для преобразования и распределения электроэнергии. Так как среди числа потребителей электроэнергии подстанции есть I и II категории, то в цепях подстанции необходимо устанавливать два трансформатора.

Исходные данные генераторов:















МВт








Результатом данного курсового проекта является спроектированная электрическая часть районная понизительная подстанция для электроснабжения потребителей электрической энергией напряжением 35/10 кВ.
Спроектированная подстанция полностью отвечает техническим требованиям. На подстанции устанавливаются два трансформатора с расщепленной обмоткой ТРДНС мощностью 25 МВА каждый.
С целью обеспечение необходимой и достаточной надежности работы СЭС на подстанции предусмотрена главная схема электрических соединений, предельно снижающая вероятность отказов и перебоев в электроснабжении. Качество электроэнергии на подстанции обеспечивается: устройствами автоматического регулирования напряжения (РПН), установленными в силовых трансформаторах, что позволяет без отключения трансформаторов изменить напряжение в заданных пределам.
На подстанции установлены необходимые устройства релейной защиты и автоматики, что обеспечивает бесперебойное электроснабжение потребителей I категории.
Таким образом, был осуществлён проект районной понизительной подстанции, удовлетворяющий нормам современного проектирования.
Дата добавления: 28.04.2020
КП 21. Курсовой проект - Технологический процесс восстановления вилки кардана трактора ДТ-75 | Компас

Введение                                                                                                             4
1 КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИЙ АНАЛИЗ ВОССТАНАВЛИ-ВАЕМОЙ ДЕТАЛИ        5
1.1  Назначение детали и анализ технологического процесса его изготовления 5
1.2  Анализ условий работы детали в сопряжении, видов и процессов ее изнашивания             7
1.3  Анализ дефектов детали и возможных технологических способов восстановления   8
1.4  Выбор технологических баз для обработки                                                     9
1.5 Разработка ремонтного чертежа  детали                                                           10
2  РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ДЕТАЛИ        11
2.1 Выбор рационального способа восстановления детали                                 11
2.2 Разработка предварительного маршрута восстановления детали                 12
2.3 Выбор технологического оборудования, приспособлений, рабочего инструмента, средств контроля и измерений                                                                     12
2.4 Разработка маршрутной карты восстановления детали                                  13
2.5 Обоснование общих и операцион¬ных припусков и допусков на обработку 14
2.6 Расчет режимов и норм времени выполнения операций                                 15
2.7  Разработка операционных карт и операционных эскизов                              17
3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНО¬ВАНИЕ ТЕХ-НОЛОГИЧЕСКОГО ПРОЦЕССА ВОССТАНОВЛЕНИЯ ДЕТАЛИ                                                       18
3.1 Расчет полной себестоимости восстановления детали                                    18
3.2 Определение основных технико-экономических показателей восстановления детали   19
Заключение                                                                                                                 20
Библиографический список                                                                                      


Для защиты подшипника кардана на наружную поверхность детали установлена манжета.  
В процессе эксплуатации деталь испытывает большие знакопеременные динамические нагрузки. Вся нагрузка передается через шлицевое соединение. 
По типу геометрической формы деталь относится к корпусным деталям. Вилка изготавливается из стали 35 ГОСТ 1050-2013. Заготовку полу-чают литьем в глинопесчаные формы.
Точность изготовления основных поверхностей детали:
- диаметр наружной поверхности должен быть – 70-0,2  мм;
- диаметр отверстия под болты должен быть – 26+0,084  мм;
- ширина шлицев на глубине 3 мм должна быть – 6,94+0,125…6,94+0,045 мм;
- ширина шлицев на глубине 0,5 мм должна быть – 4,05+0,21…6,94+0,09 мм.
- твердость НВ 207…241;
- чистота обрабатываемых поверхностей не менее Ra 6,3;
- чистота поверхностей под сальник не менее Ra 1,25.
Основные операции изготовления детали:
1. Литейная. Отливка детали. Оборудование – заливочный ковш, газовая вагранка. Инструмент – макет;
2. Токарная. Точить внешние и внутренние цилиндрические поверхности 1, 4, 5, 6, 8, 11, 14 (рисунок 2). Оборудование – станок токарно-винторезный 16К20;
3. Слесарная. Сверлить отверстия под крепежные болты 13 и снять фаску 12. Оборудование - вертикально-сверлильный станок 2Н118Э. Инструменты - сверла, зенкеры;
4. Токарная. Снять фаски 2, 3, 7, 9, 10. Оборудование – станок токарно-винторезный 16К20;
4. Зубофрезерная. Фрезеровать шлицы 14. Оборудование – станок зубофрезерный. Инструмент – фрезы для нарезания шлицев;
5. Контрольная. Контроль размеров. Оборудование - стол контролера. Инструмент - штангенциркуль ШЦ – 135 ГОСТ 166-89.


В процессе выполнения работы был разработан технологический процесс восстановления посадочной поверхности вилки кардана трактора ДТ-75 под сальник.  
Восстановление детали производим методом постановки дополнительной ремонтной детали. Ремонт деталей постановкой дополнительной ремонт-ной детали по сравнению с другими способами восстановления имеет низкую себестоимость. Данный способ может примениться для всех материалов. Для устранения дефекта необходимо обточить поверхность и напрессовать ранее подготовленную втулку. Преимуществом восстановления деталей постановкой ДРД является простота технологического процесса и применяемого оборудования, а также отсутствие термического воздействия на деталь. 
Но несмотря на это процесс имеет следующие недостатки:
- необходимость места для установки втулки из-за существенной толщины стенки втулки; 
- большой расход материала на изготовление дополнительной ремонтной детали;
- снижение механической прочности восстанавливаемой детали.
Дата добавления: 05.03.2021
РП 22. ПОС Комплексное благоустройство территории в Республике Удмуртия | AutoCad

Участок строительства имеет сложную форму.
Климатический район – II.
Площадка строительства расположена в пределах сельской, застроенной территории. Уча-сток свободен от застройки.
Согласно инженерно-геологическим изысканиям участок относится к району распростра-нения делювиальных грунтов. 
Технико-экономические показатели объекта:



ИГЭ № 1 – четвертичные делювиальные пески мелкие – dQ;
ИГЭ № 2 – четвертичные делювиальные суглинки полутвердые – dQ; 
ИГЭ № 3 – среднепермские элювиальные глины полутвердые, трещиноватые– eP2;
ИГЭ № 4 – среднепермские глины твердые – P2.
По степени морозной пучинистости грунты ИГЭ № 2,3 характеризуются как слабо-пучинистые, ИГЭ № 1 – как среднепучинистые.
Дата добавления: 29.09.2021
КП 23. Курсовой проект - 2-х этажный жилой дом 12,9 х 9,3 м в г. Санкт-Петербург | AutoCad

1.Ведомость рабочих чертежей            3
2.Исходные данные             3
3.Решение генерального плана                4
4.Объемно-планировочное решение                4
5.Архитектурно-конструктивные решения            5
6.Отделочные работы
7.Теплотехнический расчет наружной стены                 
8.Расчет естественной освещенности         10
9.Технико-экономические показатели               11
10. Список литературы  13


Вход расположен с северной стороны и имеет одну лестничную клетку. На первом этаже расположены кухня-столовая, гостиная, санузел и котельная. На втором этаже находятся рабочий кабинет, три спальни и ванная комната и балкон. Здание оборудовано горячим и холодным водоснабжением, канализацией, электричеством. 


Перекрытия первого и второго этажей выполнены из многопустотных железобетонных плит серии 1.141-1: 1ПК51.10; 1ПК30.12; 1ПК51.15. Опирание плит на стены по осям 1,4 -200 мм, на стену по осям 2,4 – 180(190) мм.
Фундаменты сборные из бетонных блоков на естественном основании. Ширина фундаментов составляет 0,8м и 1м.Глубина заложения 1,5м от естественной поверхности земли. Блоки, соприкасающиеся с грунтом, для гидроизоляции обмазывают битумом за 2 раза. В уровне обреза цоколя выполнена горизонтальная гидроизоляция из одного слоя гидроизола.
Конструкция наружных стен - трехслойная. Несущая часть стены толщиной 250 мм выполнена из обыкновенного кирпича, к нему примыкает 130мм слой пенополистирола. Третий слой представляет собой облицовочную кладку толщиной 120 мм, выполненную из глиняного обыкновенного кирпича на цементно-песчаном растворе. Привязка к оси наружной стены - 200 мм от внутренней грани стены.
Внутренние стены имеют толщину 380мм, выполнены из кирпича и являются несущими элементами конструкции. Привязка к оси внутренних стен – посередине. Проёмы перекрывают сборными ж/б перемычками , которые воспринимают вертикальную нагрузку от вышележащей кладки,  а в несущих  стенах и от перекрытий. При пересечении стен и перегородок инженерными коммуникациями зазоры между коммуникациями и конструкцией зачеканить наглухо раствором или мастикой из несгораемых материалов на всю толщину конструкции. Перегородки – кирпичные толщиной 120 мм.
Покрытие здания состоит из системы наслонных стропил, обшитых обрешеткой из доски 120х160 мм с шагом 690-890 мм с кровлей из керамической черепицы. Крыша в плане четырёхскатная. 
В качестве оконного заполнения используют окна ПВХ «VEKA». Окна устанавливаются в проемах стен с четвертями.
В качестве заполнения дверных проемов применяются деревянные глухие однопольные. Входная дверь – однопольная. Ширина дверей 1210 мм, 1101 мм и 910 мм, высота 2070 мм и 2370 мм. Крепление оконных и дверных коробок производить саморезами. Зазоры между оконными и дверными коробками и конструкцией стены должны быть по всему периметру заполнены полиуретаном. Подоконные отливы выполнить из оцинкованной стали с заведением под облицовку откосов. 
В устройстве кровли стропила опираются на наружные стены, на которых закреплён подстропильный брус 160х160мм. Лестница с забежными ступенями деревянная с проступью - 320мм и подступенком 150мм без перил. Конструкция лестницы имеет металлические косоуры из швеллера №20, с которыми стыкуются проступи и подступёнки.


- Площадь участка 1200 м2
- Площадь застройки 122,3 м2
- Жилая площадь 82.7 м2
- Общая площадь 165,2 м2
- Строительный объем 1015 м³


                                                                                               
Дата добавления: 19.12.2021
КП 24. Курсовой проект - ТК на монтаж перекрытия здания поликлиники в г. Орел | AutoCad

1 Определение объёмов работ
2 Подсчёт трудозатрат и количества машино- смен основных 
строительных машин
3 Выбор ведущей машины
4 Технология производства работ
5 Технико-экономические показатели
Литература


Соединяются элементы между собой сваркой закладных деталей.
Стены в здании выполнены каменные. Кладку ведут со строгим выполнением перевязки швов. Толщина наружных стен по результатам расчета принята 705 мм.
Внутренние стены выполнены из керамического кирпича толщиной 380 мм ,на растворе М 25.
Кирпичные перегородки толщиной 120 мм армированы 2d 5 ГОСТ 6727-80 в горизонтальных швах через три ряда кладки по высоте, с заводкой в несущие стены не менее 250 мм.
Плиты перекрытия изготовлены из бетона В20 при толщине 220 мм.
Лестницы внутри здания выполнены из крупно размерных железобетонных элементов площадок и маршей
Покрытие в здании выполнено раздельное, скатное. Уклон покрытия составляет 10%. Стропильные несущие конструкции выполнены наслонными. Расстояние между стойками 4 и 3 м, расстояние между стропильными ногами 1,2 м.
Кровля в здании выполнена из профилированных листов «Ранилла».
Деревянные оконные блоки со спаренными переплетами марок ОС 17-17 и ОС –15-17 .Створки переплетов соединены между собой стяжными винтами.
Двери в здании выполнены распашные однопольные с размерами 1010х2070, 910 х2070, 810 х 2070 мм и двупольные 1310 х 2070 мм .
Все стены внутри помещений отделаны высококачественной штукатуркой и зашпаклеваны, стены санузлов облицованы керамической плиткой. Отделка кабинетов заключается в водоэмульсионной окраске. Стены коридоров окрашены эмалевой краской. Поверхность потолка отделана клеевой улучшенной окраской. Низ лестничных маршей и площадок окрашен известковым раствором.
Наружная отделка включает в себя высококачественную штукатурку фасадов декоративным раствором, окраску кремнеорганическими красками.


1.Трудоемкость возведения здания 3619 чел-см.
2.Затраты машинного времени на возведение здания 94,4 маш- см.
3.Выработка на одного монтажника в день 2,1 т/см.
4.Выработка на одного каменщика в день 4,19 м3/см.



Дата добавления: 31.03.2022
КП 25. Курсовой проект - Расчет распылительной сушилки в технологии получения лицевого керамического кирпича по шликерному способу подготовки массы | AutoCad

Реферат 3
Введение 4
1.Технология получения керамических плит для полов 7
2. Расчет оборудования 10
3. Теория процесса 16
3.1 Распыление жидких и жидкообразных масс 17
3.2 Процесс тепло- и массообмена 20
Заключение 25
Список использованной литературы 26


Суспензия имеет следующие характеристики:
влажность Wс = 48%,
температура tc = 25°C,
вязкость Ƞс = 260 спз.,
плотность γ = 1,47 г/см3.
Подача суспензии осуществляется через форсунки с диаметром сопла dc= 2,1 мм, и коэффициентом расхода µмак.= 0,55.
После сушки порошок имеет размер гранул d3.2= 0,207 мм,
с влажностью WK = 6%.
Потери порошка при сушке составляет П = 2,5%.
Теплотворная способность теплоносителя Qнр = 10719 кДж/м3 (торф).
При сушке суспензии расход воздуха на горение g0 = 14 кг/м3.
Теплопотери в окружающую среду qn = 44 ккал/кг.
Коэффициент полезного действия горелок ȠГ = 1.
Наружный воздух имеет следующие параметры: температура t0 = 15°C,
влагосодержание d0 = 20 г/кг,
относительное количество избыточного воздуха Х0 = 0,45.
Теплоемкость абсолютно сухого материала С = 0,92 ккал/кг.град.
Производительность сушилки по сухому порошку G=2200 кг/ч


Производительность сушилки      375 кг/ч
Размеры сушильной камеры:
диаметр                        4000 мм
высота                         3000 мм
объем общий                    85.9 л/ч
Параметры суспензии:
начальная влажность                 43%
конечная влажность                  7%
Вид топлива                           торф
Характер подачи суспензии          Снизу вверх 
Давление распыления                  4,5 атм.
Количество форсунок                    5 шт.
Дата добавления: 25.04.2022
КП 26. Курсовая работа - 2-х этажное гражданское здание из мелкоразмерных элементов 21,6 х 15,0 м в г. Тула | AutoCad

1.1.Теплотехнический расчет наружной стены    5
1.2 Заполнение оконных и дверных проемов    9
1.3 Расчет лестничной клетки    10
1.4 Чертёж схемы междуэтажного перекрытия    12
1.5 Расчет глубины заложения фундаментов    13
1.6 Чертёж плана стропил    14
1.7 Чертёж разреза    15
Приложение 1    17
Приложение 2    18
1.8 Список литературы    19


1.Район строительства: Тульская область;
2.Влажностный режим помещений – нормальный;
3.Зона влажности района строительства – нормальная (СП 50.13330.2012.  прил. В);
4.Условие эксплуатации ограждающей конструкции – Б (СП 50.13330.2012 табл.1);
5. Z от - продолжительность, сут., отопительного периода для периода со  средней суточной температурой наружного воздуха не более 8°С ( для жилых зданий),  Z от = 207 суток (СП131.13330.2012,  таблица 3.1);
6.t от - средняя температура наружного воздуха, °C, для периода со средней суточной температурой наружного воздуха не более 8°С, t от= - 3,0 °C (СП131.13330.2012, таблица 3.1);
7. t в - расчётная температура внутреннего воздуха для жилого здания, °С, 
t в =20°C.
 



Дата добавления: 27.04.2022
КП 27. Курсовой проект - Содержание МТФ на 800 голов с разработкой поточно-технологической линии доения и первичной обработки молока | AutoCad

Аннотация 4
Введение 5
1 Характеристика заданного комплекса 7
2 Описание генерального плана фермы 8
3 Описание технологии содержания животных и выбор типовых помещ. 10
4 Расчет структуры стада 12
5 Расчет и подбор оборудования для водоснабжения 13
6 Расчет и подбор оборудования для освещения 19
7 Расчет и подбор оборудования для вентиляции 21
8 Расчет и подбор оборудования для отопления 26
9 Расчет и подбор оборудования для кормления 29
10 Расчет и подбор оборудования для навозоудаления 33
11 Описание, расчет и подбор оборудования заданной поточно-технологической линии 35
12 Построение совмещенного графика работы машин и расход электроэнергии 41
13 Описание конструкции, принципа работы машины, обслуживания и подготовке к работе 43
14 Меры по охране труда 46
Заключение 50
Список использованной литературы 51


2.Технология содержания животных (птицы): привязное;
3.Время стойлового периода, откорма или содержания: 182
4.Основное проектируемое животноводческое помещение: на 200 голов.

Заключение
Выполнен проект механизации содержания МТФ на 400 голов, с поточно-технологической линией доения и первичной обработки молока при использовании доильного аппарата АДМ-8А производительностью 112 гол/ч; нормой обслуживания – 200 гол; мощностью 9,1 кВт. Для водоснабжения и поения выбрано следующее оборудования: для наружного водопровода выбрана марка стальных труб 11/2", с технической характеристикой: условный проход – 50 мм; наружный диаметр – 48,4; масса 1 пог.м – 3,8 кг. Выбран насос погружного типа марки марки ЭЦВ-6-4,5-18,0 с технической характеристикой: производительность – 3,2…5,7 м^3/час; полный напор – 207…136 м; мощность электродвигателя – 4,5 кВт. Выбрана башня БР-50У, вместимость бака – 50 м^3; полная вместимость башни – 71 м^3; высота до «дна бака» - 14 м. Для вентиляции помещения выбран осевой вентилятор АТ 4815. По полученным данным для отопления выбран NDA – 100/2. Номинальная теплопроизводительность – 100 кВт; потребляемая мощность – 0,61 кВт; производительность по воздуху – 6500 м^3/ч. Оборудования для приготовления и раздачи кормов – раздатчик кормов стационарный РКУ-200. Типовое навозохранилище было выбрано со следующими техническими характеристиками: цилиндрическое высокое хранилище, изготовленное из монолитного железобетона; вместимость хранилища – 3000, 5000〖 м〗^3; высота укладки навоза – до 5,0 м.
В данной работе также были разработаны мероприятия по охране труда и технике безопасности. Нужно предусматривать все правила по уходу за животными, а также правила безопасности эксплуатации машин и меры по охране труда. Была также представлена графическая часть в виде трех чертежей: фермы на 800 голов, коровника на 200 голов и поточно-технологической линии доения и первичной обработки молока.
 
Дата добавления: 20.05.2022
КП 28. Курсовой проект - ОиФ административного здания 36 х 24 м в г. Актюбинск | AutoCad

Задание
РЕФЕРАТ
1. Исходные данные
2. Анализ инженерно-геологических условий, свойств грунтов и оценка расчётного сопротивления грунтов
3. РАСПОЛОЖЕНИЕ ЗДАНИЯ НА ПЛАНЕ УЧАСТКА
4. АНАЛИЗ КОНСТРУКТИВНЫХ ОСОБЕННОСТЙ ЗДАНИЯ И ХАРАКТЕР НАГРУЗОК НА ОСНОВАНИЕ 
5. РАСЧЕТ ФУНДАМЕНТОВ МЕЛКОГО ЗАЛОЖЕНИЯ
5.1 Определение глубины заложения фундаментов
5.2 Расчет фундамента №1
5.3. Расчет осадки фундамента № 1
5.4 Расчет фундамента №4
5.5 Расчет осадки фундамента № 4
6. РАСЧЕТ СВАЙНЫХ ФУНДАМЕНТОВ
6.1. Определение глубины заложения ростверков 
6.2. Проектирование и расчет несущей способности свайного фундамента №1
6.3 Расчет осадки для свайного фундамента № 1
6.4 Проектирование и расчет несущей способности свайного фундамента №1
6.5. Расчет осадки для свайного фундамента № 4
7. Указания по устройству гидроизоляции
8. ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


НОМЕР ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКОГО РАЗРЕЗА 30
ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СЛОЕВ ГРУНТА
ИГЭ №14  
- толщина слоя 2 м 
- удельный вес грунта γ,=20,1кН/м3
- удельный вес частиц γS=26,9 кН/м3
- влажность природная ω=0,19        
- влажность на границе пластичности -
- влажность на границе текучести - 
- коэффициент фильтрации Кф=2,1·10-4 см/с
- удельное сцепление -
- угол внутреннего трения φ=30 град
- модуль деформации Е=38 (380)  МПа (кгс/см2 ) 
ИГЭ № 19 насыпной грунт
ИГЭ № 22    
- толщина слоя 4 м
- удельный вес грунта γ,=20,2кН/м3
- удельный вес частиц γS=26,6 кН/м3
- влажность природная ω=0,15        
- влажность на границе пластичности ωР=  -
- влажность на границе текучести ωL= - 
- коэффициент фильтрации Кф=2,2·10-8 см/с
- удельное сцепление с= - 
- угол внутреннего трения φ=36 град
- модуль деформации Е=39 (390)  МПа (кгс/см2 ) 
ИГЭ №28         
- толщина слоя 2 м
- удельный вес грунта γ,=18,9кН/м3
- удельный вес частиц γS= 26 кН/м3
- влажность природная ω=0,11        
- влажность на границе пластичности ωР=0,10        
- влажность на границе текучести ωL=0,26 
- коэффициент фильтрации Кф=2,8·10-8 см/с
- удельное сцепление с=39(0,39) кПа (кгс/см2 )
- угол внутреннего трения φ=23 град
- модуль деформации Е=28 (280)  МПа (кгс/см2 ) 


УПВ = 204 м
НАГРУЗКИ НА ОБРЕЗЕ ФУНДАМЕНТА(расчетные для расчета по II группе ПС: 
Фундамент 1: N = 0,23 Мн (230 кН); M = -0,02Мн∙м (-20  кН*м); 
Фундамент 4: N =  2216Мн  (4352кН); M = -12 Мн  (30 кН*м); 
Деталь проекта проектирование фундаментов №1 и 3.


Курсовой проект выполнен в соответствии с существующими государственными стандартами и нормами проектирования.
В результате проектирования фундаментов по заданным нагрузкам и характеристикам грунтов и их несущей способности было разработано два варианта фундаментов под колонны производственного цеха и два варианта фундаментов под несущие стены бизнес центра: фундаменты мелкого заложения и свайные фундаменты. Город проектирования Актюбинск.
При выполнении курсового проекта были определены:
1)Для ФМЗ № 1 выбран фундамент размерами 1,0х1,0 м;
  Для ФМЗ № 4 выбран фундамент шириной 0,6 м.
2) Глубина заложения ФМЗ №1, 4 – 1,650 метра.
3) Осадка фундаментов ФМЗ не превышает 1,92 сантиметра.
4) Для устройства свайного фундамента используются типоразмеры 
№ 1 – С6-30 (жесткое сопряжение), № 4 – С3,5-30 (жесткое сопряжение), 
5) Глубина заложения ростверка для фундамента № 1-3,400 м, № 4 – 5,450 
6) Осадка свайных фундаментов не превышает 1,637 сантиметра.
Дата добавления: 09.08.2022
КП 29. Курсовой проект - Сооружение автодорожного тоннеля горным способом | AutoCad

Введение 6
1. Исходные данные 6
2. Разработка, уборка и вывоз грунта 8
2.1. Выбор способа разработки 8
2.1.1. Конструктивные особенности и основные технические характеристики проходческого комбайна Mitsui MRH-S200 8
2.2. Уборка и вывоз грунта 11
2.2.1. Технические характеристики автопоезда МоАЗ-74051 11
3. Временное крепление выработки 12
3.1. Выбор временной крепи .12
4. Расчет временной крепи 13
4.1. Организация работ по возведению временной крепи 14
4.1.1. Технические характеристики торкрет-установки Sika-PM 4207 14
4.2. Устройство гидроизоляции 15
5. Возведение постоянной обделки 16
5.1. Передвижная опалубка 16
5.2. Устройства для доставки, подачи и укладки бетонной смеси 17
6. Расчет параметров проходческого цикла. Построение циклограммы 18
7. Устройство вентиляции выработки 20
8. Освещение подземных выработок 20
9. Мероприятия по охране труда и технике безопасности 21
9.1. Меры безопасности при работе горнопроходческого комбайна 21
9.2. Правила безопасности при работе самоходных машин с двигателями внутреннего сгорания в подземных выработках  24
9.3. Правила безопасности при временном креплении выработки 25
9.4. Правила безопасности при гидроизоляционных работах 28
9.5. Правила безопасности при возведении постоянной железобетонной обделки 34
9.6. Противоаварийная и противопожарная защита 40
9.7. Техника безопасности при нанесении набрызг-бетона 44
Библиографический список .49


Участок №1 производства работ длиной 476,1 м:
Характеристики грунта (песчаник выветрившийся):
–коэффициент крепости f = 2;
–объемный вес γ = 2, 2 т/м3;
–угол внутреннего трения ϕ = 60◦;
–кажущийся угол внутреннего трения ϕ = 63,4◦;
–коэффициент удельного упругого отпора грунта K0 = 200 кг/см3.
Участок №2 производства работ длиной 318,2 м:
Характеристики грунта (туф):
–коэффициент крепости f = 3;
–объемный вес γ = 1,1 т/м3;
–угол внутреннего трения ϕ = 63◦;
–кажущийся угол внутреннего трения ϕ = 71,5◦;
–коэффициент удельного упругого отпора грунта K0 = 275 кг/см3.
Участок №3 производства работ длиной 421,8 м:
Характеристики грунта (змеевик средней крепости):
–коэффициент крепости f = 6;
–объемный вес γ = 2,5 т/м3;
–угол внутреннего трения ϕ = 73◦;
–кажущийся угол внутреннего трения ϕ = 80,5◦;
–коэффициент удельного упругого отпора грунта K0 = 1800 кг/см3.
Проходку будем осуществлять новоавстрийским методом. Применим данный способ на всем протяжении тоннеля, это позволит применять одну и ту же последовательность операций, и технику на всем протяжении.


1)Разработка калотты;
2)Временное крепление калотты анкерами с подхватом сеткой сразу за разработкой; 
3)Нанесение бетонной смеси методом набрызга по всему периметру выработки;
4)Разработка штроссы;
5)Нанесение набрызг-бетона на раскрытом участке уступа; 
6)Устройство гидроизоляции поверх временной крепи;
7)Армирование и бетонирование обратного свода;
8)Армирование и бетонирование свода и стен с применением передвижной опалубки.
 
Дата добавления: 28.11.2022
КП 30. Курсовой проект - ОСП строительства 9-ти этажного 2-х секционного жилого дома | AutoCad

Введение
Исходные данные
1. Организация строительства жилого дома 
2. Выбор методов производства основных работ и ведущих машин 
2.1. Производство земляных работ 
2.2. Возведение стен, перегородок и монтаж железобетонных конструкций
2.3. Производство отделочных работ 
3. Определение продолжительности работ, сменности, состава бригад, числа исполнителей 
4. Расчёт и оптимизация календарного плана 
4.1. График движения рабочих кадров
4.2. График движения машин и механизмов 
5. Технико-экономические  показатели календарного плана
6. Проектирование объектного стройгенплана.
7. Проектирование временного водо- и электроснабжения                                              
7.1. Организация водоснабжения 
7.2. Организация обеспечения строительства электроэнергией
8. Расчёт временного теплоснабжения, потребности в сжатом воздухе 
9. Проектирование складского хозяйства
10. Требования охраны труда при проектировании стройгенпланов 
Заключение
Список использованной литературы.


Тип здания – кирпичное жилое.
Количество секций – 2.
Количество этажей – 9.
Площадь одной секции – 2670 м2.
Площадь здания – 2 х 2670=5 340 м2.
Начало строительства - январь 2023 года.
Продолжительность строительства определяем по СНиП 1.04.03-85* Часть 2 <7] экстраполяцией.     
Для зданий площадью более 3000 м2 общая продолжительность- 8 мес.:
-подготовительный период-1 мес.
-подземная часть- 1 мес.
-надземная часть- 4,5 мес.
-отделка- 1,5 мес.
Проведем экстраполяцию для нашего здания с площадью 5 340м2 :
Увеличение площади составит:
(5340-3000)/3000*100 = 78%. 
Прирост к норме продолжительности строительства составит:
78*0,3 =23,4 %.
Продолжительность строительства с учетом экстраполяции будет равна: 
Т= 8*(100+23,4)/100 = 11,87 мес.; принимаем 12 мес.
Итак, общая продолжительность строительства -12 мес.:
-подготовительный период – 1 мес. 
-подземная часть – 1 мес. 
-надземная часть – 6,5 мес. 
-отделка – 1,5 мес. 
Тн= 1*22+1*22+6,5*22+1,5*22=220 дней.


Разработан календарный план производства работ и объектный стройгенлан на строительство 9-этажного 2-секционного кирпичного жилого дома.
Площадь одной секции -2670 м2,
Площадь всего здания – 2 х 2670= 5340 м2,
Начало строительства- январь 2022 года.
Продолжительность выполнения работ определена по календарному плану и составляет 207 дней или 11 месяцев. 
Сметная стоимость строительства дома в ценах 2001 года –  35002,90 тыс. рублей. При переходе к текущим ценам 2022  года используем индекс –    12для ЧР, получаем  17259 ·12=172590тыс.руб.
Сметная стоимость 1 м2 общ. пл.32,77 тыс. руб.
Трудоемкость на строительство объекта определена по калькуляции трудозатрат и составляет:
-по нормативным показателям – 33470,33  чел-дн.,
-по проектируемым  из графика движения рабочих -33213   чел-дн.
Трудоемкость 1 м2 общ. пл. 6,46 по норме  6,46 по проекту.
Максимальное число рабочих-95 чел.,
Среднее число рабочих -62 чел.


 
Дата добавления: 30.01.2023

На страницу 1 2 3

© Rundex 1.2
Cloudim - онлайн консультант для сайта бесплатно.